Journal of Fluorescence

, Volume 21, Issue 1, pp 289–297 | Cite as

Synthesis, Characterization and Photoluminescence Study of Novel Sulfobetaine Polyelectrolytes

  • Nazia Tarannum
  • Hirdyesh Mishra
  • Meenakshi Singh
Original Paper


A novel sulfobetaine copolymer is developed via polycondensation approach. The comonomers, melamine, condenses with a diketone, 5,5-dimethyl-1,3-cyclohexane (dimedone) to produce polyimine chain based on Schiff base chemistry. Dimedone-[N,N’ melaminium] propane sulfonate copolymer crystals were obtained on treatment of the polyimine with sulfopropylating agent, 1,3-propane sultone with a crosslinker, di(ethylene glycol diacrylate) (DEGDA). This crosslinked sulfobetaine polymer yielded fine needle like single crystals and shows strong blue fluorescence and a week green phosphorescence. Multi-exponential fluorescence decay function indicates the presence of different conformers both in solution and crystalline phase. This easy straightforward protocol for synthesis of crystalline, soluble, and luminescent polymer could prove to be a landmark in development of next generation smart functional materials.


Polyimine Sulfobetaine Crosslinking Luminescence 



The financial support by Department of Science and Technology [SR/S2/CMP-65/2007] is gratefully acknowledged. Authors acknowledge Prof.GVS Sastry (SEM), Dr. B Ray (GPC) and Dr. S Pant with his research group for their kind help. Authors are also highly thankful to Prof. C.D. Geddes, Director Institute of fluorescence, UMBC, Baltimore MD, USA for some of the time domain fluorescence measurements.


  1. 1.
    Schiff H (1864) Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen Liebigs Justus. Ann Chem 131:118–119CrossRefGoogle Scholar
  2. 2.
    Borisova NE, Reshetova MD, Ustynyuk YA (2007) Metal-free methods in the synthesis of macrocyclic schiff bases metal-free methods in the synthesis of macrocyclic schiff bases. Chem Rev 107:46–79CrossRefPubMedGoogle Scholar
  3. 3.
    Rowan SJ, Stoddart JF (1999) Thermodynamic synthesis of rotaxanes by imine exchange. Org Lett 1:1913–1916CrossRefGoogle Scholar
  4. 4.
    Yuan J, Zhang J, Zang X, Shen J, Lin S (2003) Improvement of blood compatibility on cellulose membrane surface by grafting betaines. Colloids Surf B 30:147–155CrossRefGoogle Scholar
  5. 5.
    Kitano H, Tada S, Mori T, Takaha K, Gemmei-Ide M, Tanaka M, Fukuda M, Yokoyama Y (2005) Correlation between the structure of water in the vicinity of carboxybetaine polymers and their blood-compatibility. Langmuir 21:11932–11940CrossRefPubMedGoogle Scholar
  6. 6.
    West SL, Salvage JP, Lobb EJ, Armes SP, Billingham NC, Lewis AL, Hanlon GW, Lloyd AW (2003) The biocompatibility of crosslinkeable coatings containing sulfobetaine and phosphobetaine. Biomaterials 25:1195–1204CrossRefGoogle Scholar
  7. 7.
    Zhang Z, Chen S, Chang Y, Jiang S (2006) Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B 110:10799–10804CrossRefPubMedGoogle Scholar
  8. 8.
    Lewis AL, Cumming ZL, Goreish HH, Kirkwood LC, Tolhurst LA, Stratford PW (2001) Crosslinkable coatings from phoshorylcholine based polymers. Biomaterials 22:99–111CrossRefPubMedGoogle Scholar
  9. 9.
    Lowe AB, Vamvakaki M, Wassall MA, Wong L, Billingham NC, Armes SP, Lloyd AW (2000) Well defined sulfobetaine based statistical copolymers as potential antibioadherant coatings. J Biomed Mater Res 52:88–94CrossRefPubMedGoogle Scholar
  10. 10.
    Salloum DS, Olenych SG, Keller TCS, Schlenoff JB (2005) Vascular smooth muscle cell on polyelectrolytes multilayers: hydrophobicity directed adhesion and growth. Biomacromolecules 6:161–167CrossRefPubMedGoogle Scholar
  11. 11.
    Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163PubMedGoogle Scholar
  12. 12.
    Amimoto K, Kawato T (2005) Photochromism of organic compounds in the crystal state. J Photochem Photobiol C Photochem Rev 6:207–226CrossRefGoogle Scholar
  13. 13.
    Hadjoudis E, Mavridis IM (2004) Photochromism and thermochromism of Schiff bases in the solid state: structural aspects. Chem Soc Rev 33:579–588PubMedGoogle Scholar
  14. 14.
    Mishra H (2006) Photo-induced excited State relaxation of hydroxy naphthoic acids in polymers. J Phys Chem B 110(19):9387–9396CrossRefPubMedGoogle Scholar
  15. 15.
    Roberts W, Liams WLD (1987) Sultone chemistry. Tetrahedron 43:1027–1062CrossRefGoogle Scholar
  16. 16.
    Schmitt KD (1995) Surfactant-mediated phase transfer as an alternative to propanesultone alkylation. Formation of a new class of zwitterionic surfactants. J Org Chem 60:5474–5479CrossRefGoogle Scholar
  17. 17.
    Gautun OR, Carlsen PHJ, Maldal T, Vikane O, Gilje E (1996) Selective synthesis of aliphatic ethylene glycol sulfonate surfactants. Acta Chem Scand 50:170–177CrossRefGoogle Scholar
  18. 18.
    Flanagan JH, Khan SH, Menchen S, Soper SA, Hammer RP (1997) Functionalized tricarbocyanine dyes as near-infrared fluorescent probes for biomolecules. Bioconjugate Chem 8:751–756CrossRefGoogle Scholar
  19. 19.
    Carrea G, Ottolina G, Riva S, Danieli B, Lesma G, Palmisano G (1988) Alkylation of adenine, adenosine, and nad+ with 1, 3-propanesultone. synthesis of n6-(3-sulfonatopropyl)-nad+, a new nad+ derivative with substantial coenzyme activity. Helv Chem Acta 71:762–772CrossRefGoogle Scholar
  20. 20.
    Misra V, Mishra H (2008) Photoinduced proton transfer coupled with energy transfer: Mechanism of sensitized luminescence of terbium ion by salicylic acid doped in polymer. J Chem Phys 128:244701–244707CrossRefPubMedGoogle Scholar
  21. 21.
    Han SS, Furakawa H, Yaghi OM, Goddard WA (2008) Covalent organic frameworks as exceptional hydrogen storage materials. J Am Chem Soc 130:11580–11581CrossRefPubMedGoogle Scholar
  22. 22.
    McKeown NB, Budd PM (2006) Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage Chem. Soc Rev 35:675–683CrossRefGoogle Scholar
  23. 23.
    Mackintosh HJ, Budd PM, McKeown NB (2008) Catalysis by microporous phthalocyanine and porphyrin network polymers. J Mater Chem 18:573–578CrossRefGoogle Scholar
  24. 24.
    Cote AP, Benin AI, Ockwig NW, Keeffe MO, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310:1166–1170CrossRefPubMedGoogle Scholar
  25. 25.
    Jiang JX, Su F, Trewin A, Wood CD, Campbell NL, Niu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI (2007) Conjugated microporous poly(aryleneethynylene) networks. Angew Chem Int Ed 46:8574–8578CrossRefGoogle Scholar
  26. 26.
    Wood C, Tan B, Trewin A, Niu H, Bradshaw D, Rosseinsky MJ, Khimyak YZ, Campbell NL, Kirk R, Stockel E, Cooper AI (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19:2034–2048CrossRefGoogle Scholar
  27. 27.
    Schmidt J, Weber J, Epping JD, Antonietti M, Thomas A (2009) Microporous Conjugated poly(thienylene arylene) networks. Adv Mater 21:702–705CrossRefGoogle Scholar
  28. 28.
    Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47:3450–3453CrossRefGoogle Scholar
  29. 29.
    Davankov VA, Tsyurupa MP (1990) Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks. React Polym 13:27–42CrossRefGoogle Scholar
  30. 30.
    Rose M, Bohlmann W, Sabo M, Kaskel S (2008) Element–organic frameworks with high permanent porosity. Chem Commun 2462–2464Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nazia Tarannum
    • 1
  • Hirdyesh Mishra
    • 2
  • Meenakshi Singh
    • 1
  1. 1.Department of Chemistry, MMVBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Physics, MMVBanaras Hindu UniversityVaranasiIndia

Personalised recommendations