Journal of Fluorescence

, Volume 20, Issue 3, pp 745–751 | Cite as

Spectroscopic Properties and Energy Transfer Analysis of Tm3+-Doped BaF2-Ga2O3-GeO2-La2O3 Glass

Original Paper


This paper reports on the spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glasses with different Tm2O3 doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm−2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm3+, cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm2O3 doping concentrations. The maximum fluorescence intensity at around 1.8 μm has been obtained in Tm2O3-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm3+ in this sample is about 0.48 × 10−20 cm2 at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm3+-doped BaF2-Ga2O3-GeO2- La2O3 glass for 2.0-μm optical fiber laser.


Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass Spectroscopic properties Energy transfer process Judd-Ofelt theory Stimulated emission cross-section 



This work is supported by the DSTG (2006Z2-D0161), DSTG (2006 J1-C0491) and NSFC (50602017).


  1. 1.
    Henderson SW, Suni PJM, Hale CP, Hannon SM, Magee JR, Bruns DL, Yuen EH (1993) Coherent laser radar at 2-μm using solid-state lasers. IEEE Trans Geosci Remote Sens 31:4–15. doi: 10.1109/36.210439 CrossRefGoogle Scholar
  2. 2.
    Shen DY, Sahu JK, Clarkson WA (2006) High-power widely tunable Tm: fiber lasers pumped by an Er, Yb co-doped fiber laser at 1.6 μm. Opt Express 14:6084–6090. doi: 10.1364/OE.14.006084 CrossRefPubMedGoogle Scholar
  3. 3.
    Wu JF, Jiang SB, Luo T, Geng JH, Peyghambarian N, Barnes NP (2006) Efficient thulium-doped 2 μm germanate fiber laser. IEEE Photonic Technol Lett 18:334–336. doi: 10.1109/LPT.2005.861970 CrossRefGoogle Scholar
  4. 4.
    Xavier M, Valentin P, Liu JH, Maria C, Uwe G, Magdalena A, Francesc D, Miguel G, Gregorio V (2006) Efficient 2-μm continuous-wave laser oscillation of Tm3+:Klu(WO4)2. IEEE Quant Electron 42:1008–1015. doi: 10.1109/JQE.2006.881629 CrossRefGoogle Scholar
  5. 5.
    Hayward RA, Clarkson WA, Turner PW, Nilsson J, Grudinin AB, Hanna DC (2000) Efficient cladding-pumped Tm doped silica fibre laser with high power singlemode output at 2 μm. Electron Lett 32:711–712. doi: 10.1049/el:20000577 CrossRefGoogle Scholar
  6. 6.
    Geng JH, Wu JF, Jiang SB, Yu JR (2007) Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm. Opt Lett 32:355–357. doi: 10.1364/OL.32.000355 CrossRefPubMedGoogle Scholar
  7. 7.
    Liu G (USA) Jacquier B (France) (2005) Spectroscopic Properties of Rare Earths in Optical Materials. Tsinghua University Press. ISBN 7-302-07409-7: 364–365Google Scholar
  8. 8.
    Tsang YH, Coleman DJ, King TA (2003) High power 1.9 μm Tm3+-silica fibre laser pumped at 1.06 μm by a Yb3+-silica fibre laser. Opt Commun 231:357–364. doi: 10.1016/j.optcom.2003.11.072 CrossRefGoogle Scholar
  9. 9.
    Balda R, Fernandez J, Arriandiaga MA, Lacha LM, Fernandez-Navarro JM (2006) Effecet of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses. Opt Mater 28:1253–1257. doi: 10.1016/j.optmat.2005.11.033 CrossRefGoogle Scholar
  10. 10.
    Jackson SD (2004) Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers. Opt Commun 230:197–203. doi: 10.1016/j.optcom.2003.11.045 CrossRefGoogle Scholar
  11. 11.
    Carter JN, Snart RG, Hanna DC, Tropper AC (1990) CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fiber laser. Electron Lett 26:599–601. doi: 10.1049/el:19900394 CrossRefGoogle Scholar
  12. 12.
    Percival RM, Szebestaand D, Davey ST (1992) Highly efficient and tunable operation of two colour Tm-doped fluoride fiber laser. Electron Lett 28:671–673. doi: 10.1049/el:19920424 CrossRefGoogle Scholar
  13. 13.
    Yamamoto T, Miyajima Y, Komukai T, Sugawa T (1993) 1.9 μm Tm-doped fluoride fibre amplifier and laser pumped at 1.58 μm. Electron Lett 29:986–987. doi: 10.1049/el:19930656 CrossRefGoogle Scholar
  14. 14.
    Percival RM, Szebesta D, Seltzer CP, Perrin SD, Davey ST, Louka M (1995) A 1.6-μm pumped 1.9-μm thulium-doped fluoride fiber laser and amplifier of very high efficiency. IEEE J Quantum Electron 31:489–493. doi: 10.1109/3.364404 CrossRefGoogle Scholar
  15. 15.
    Pollnau M, Jackson SD (2003) Solid-state mid-infrared laser sources. Springer- Verlag Berlin Heidelberg. ISBN 978-3-540-00621-3. 89:219–255Google Scholar
  16. 16.
    Jackson SD, Mossman S (2003) Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers. Appl Opt 42:2702–2707. doi: 10.1364/AO.42.002702 CrossRefPubMedGoogle Scholar
  17. 17.
    Walsh BM, Barnes NP, Bartolo BD (1998) Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4. J Appl Phys 83:2772–2787. doi: 10.1063/1.367037 CrossRefGoogle Scholar
  18. 18.
    Tanabe S, Tamai K, Hirao K, Soga N (1993) Excited-state absorption mechanisms in red-laser-pumped uv and blue upconversions in Tm3+-doped fluoroaluminate glass. Phys Rev B 47:2507–2514. doi: 10.1103/PhysRevB.47.2507 CrossRefGoogle Scholar
  19. 19.
    Yeh DC, Petrin RR, Sibley WA, Madigou V, Adam JL, Suscavage MJ (1989) Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass. Phys Rev B 39:80–90. doi: 10.1103/PhysRevB.39.80 CrossRefGoogle Scholar
  20. 20.
    Shi DM, Zhang QY, Yang GF, Jiang ZH (2007) Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbO-GeO2 glasses codoped with Tm3+ and Ho3+. J Non-Cryst Solids 353:1508–1514. doi: 10.1016/j.jnoncrysol.2007.02.034 CrossRefGoogle Scholar
  21. 21.
    Balda R, Fernández J, García-Revilla S, Fernández-Navarro JM (2007) Spectroscopy and concentration quenching of the infrared emissions in Tm3+-doped TeO2-TiO2- Nb2O5 glass. Opt Express 15:6750–6761. doi: 10.1364/OE.15.006750 CrossRefPubMedGoogle Scholar
  22. 22.
    Han YS, Song JH, Heo J (2003) Analysis of cross relaxation between Tm3+ ions in PbO-Bi2O3-Ga2O3-GeO2 glass. J Appl Phys 94:2817–2820. doi: 10.1063/1.1595148 CrossRefGoogle Scholar
  23. 23.
    Shin YB, Lim HT, Choi YG, Kim YS, Heo J (2000) 2.0 μm Emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses. J Am Ceram Soc 83:787–791CrossRefGoogle Scholar
  24. 24.
    Yamauchi H, Murugan GS, Ohishi Y (2005) Optical properties of Er3+ and Tm3+ ions in a tellurite glass. J Appl Phys 97:043505-043505-8CrossRefGoogle Scholar
  25. 25.
    Shepherd DP, Brinck DJB, Wang J, Tropper AC, Hanna DC, Kakarantzas G, Townsend PD (1994) 1.9-μm operation of a Tm: lead germanate glass waveguide laser. Opt Lett 19:954–956. doi: 10.1364/OL.19.000954 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Optical Communication Materials, Key Laboratory of Special Functional Materials of Ministry of EducationSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations