Journal of Fluorescence

, Volume 21, Issue 3, pp 901–909 | Cite as

Photoactive Ru Complex Embedded in Mesostructured MCM-41 Nanoparticles

  • Emanuela Bottinelli
  • Ivana Miletto
  • Giuseppe Caputo
  • Salvatore Coluccia
  • Enrica Gianotti
Original Paper


The synthesis and characterization of photoactive hybrid materials based on [Ru(bpy)3]2+ physically adsorbed within the channels of mesoporous MCM-41 silica nanoparticles is presented. A set of photoactive mesostructured hybrids with different guest loading has been prepared and characterized by X-ray diffraction, High Resolution Transmission Electron Microscopy, volumetric analyses, Diffuse Reflectance UV-Vis and Photoluminescence spectroscopies and lifetime measurements. The hybrids synthesis and the washing procedures, performed to investigate the host-guest interaction and the stability of the complex within the mesopores, didn’t affect the integrity of the structure and morphology of MCM-41 nanoparticles. The dispersion of [Ru(bpy)3]2+ within the channels varied depending on the loading value and this is reflected in the different and peculiar photoluminescence features of the resulting hybrid materials. Photoluminescence spectroscopy evidenced that the use of MCM-41 nanoparticles ensures a better dispersion of the complex within the mesopores, if compared with traditional MCM-41. Further studies are in progress to investigate the interesting and promising features exhibited by such photoactive systems for advanced applications of electrochemiluminescence in optoelectronics and diagnostics.


MCM-41 nanoparticles [Ru(bpy)3]2+ Photoactive nanoparticles Hybrid materials Photoluminescence 



This work has been carried out in the frame of the Regione Piemonte CIPE 2004, D67 project. The authors acknowledge Compagnia di San Paolo for sponsorship to NIS—Centre of Excellence. IM thanks Piedmont Region for financial support. Authors would like to thanks Mr G. Bonagemma. Authors are also grateful to Prof. P. Civera, Prof. D. Demarchi and Dott. R. Canova (CHI-Lab Laboratory—DELEN Dipartimento di Elettronica—Politecnico di Torino) for preliminary ECL investigations.


  1. 1.
    Zhao W, Li D, He B, Zang J, Huang J, Zang L (2005) The photoluminescence of coumarin derivative encapsulated in MCM-41 and Ti-MCM-41. Dyes Pigm 64(3):265–270CrossRefGoogle Scholar
  2. 2.
    Li D, Zang J, Anpo M, Xue M, Liu Y (2005) Photophysical and photochemical properties of Coumain-6 molecules incorporated within MCM-48. Mater Lett 59(17):2120–2123CrossRefGoogle Scholar
  3. 3.
    Gu G, Ong PP, Li Q (1999) Photoluminescence of coumarin 540 dye confined in mesoporous silica. J Phys D: Appl Phys 32(17):2287–2289CrossRefGoogle Scholar
  4. 4.
    Yao Y, Zhang M, Shi J, Gong M, Zhang H, Yang Y (2001) Encapsulation of fluorescein into MCM-41 mesoporous molecular sieve by a sol–gel method. Mater Lett 48(1):44–48CrossRefGoogle Scholar
  5. 5.
    Lin YS, Lin YS, Tsai CP, Huang HY, Kuo CT, Hung Y, Huang DM, Chen YC, Mou CY (2005) Well-ordered mesoporous silica nanoparticles as cell markers. Chem Mater 17(18):4570–4573CrossRefGoogle Scholar
  6. 6.
    Seçkin T, Gultek A, Kartaca S (2003) The grafting of Rhodamine B onto sol-gel derived mesoporous silicas. Dyes Pigm 56(1):51–57CrossRefGoogle Scholar
  7. 7.
    Wang L, Lei J, Zhang J (2009) Building of multifluorescent mesoporous silica nanoparticles. Chem Commun 16:2195–2197CrossRefGoogle Scholar
  8. 8.
    He Q, Shi J, Cui X, Zhao J, Chen Y, Zhou J (2009) Rhodamine B-co-condensed spherical SBA-15 nanoparticles: facile co-condensation synthesis and excellent fluorescence features. J Mater Chem 19(21):3395–3403CrossRefGoogle Scholar
  9. 9.
    Xu W, Guo H, Akins DL (2001) Aggregation and exciton emission of a cyanine dye encapsulated within mesoporous MCM-41. J Phys Chem B 105(32):7686–7689CrossRefGoogle Scholar
  10. 10.
    Xu W, Akins DL (2002) Absorption and exciton emission by an aggregated cyanine dye occluded within mesoporous SBA-15. J Phys Chem B 106(8):1991–1994CrossRefGoogle Scholar
  11. 11.
    Gianotti E, Bertolino CA, Benzi C, Nicotra G, Caputo G, Castino R, Isidoro C, Coluccia S (2009) Photoactive hybrid nanomaterials: indocyanine immobilized in mesoporous MCM-41 for “In-Cell” bioimaging. ACS Appl Mater Interfaces 1(3):678–687PubMedCrossRefGoogle Scholar
  12. 12.
    Xu W, Guo H, Akins DL (2001) Aggregation of tetrakis(p-sulfonatophenyl)porphyrin within modified mesoporous MCM-41. J Phys Chem B 105(8):1543–1546CrossRefGoogle Scholar
  13. 13.
    Ogawa M, Nakamura T, Mori J-I, Kuroda K (2001) Incorporation of tris(2, 2′-bipyridine)ruthenium(II) cations ([Ru(bpy)3]2+) into a mesoporous silica. Microporous Mesoporous Mater 48(1–3):159–164CrossRefGoogle Scholar
  14. 14.
    Tiseanu C, Parvulescu VI, Kumke MU, Dobroiu S, Gessner A, Simon S (2009) Effects of support and ligand on the photoluminescence properties of siliceous grafted europium complexes. J Phys Chem C 113(14):5784–5791CrossRefGoogle Scholar
  15. 15.
    Lu XB, Zhang WH, He R (2002) Simultaneous removal of surfactant template from MCM-41 and implantation of transition metal complexes into mesopores with supercritical fluid. Chinese Chem Lett 13(5):480–483Google Scholar
  16. 16.
    Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104(6):3003–3036PubMedCrossRefGoogle Scholar
  17. 17.
    Innocenzi P, Kozuka H, Yoko T (1997) Fluorescence properties of the Ru(bpy)(3)(2+) complex incorporated in sol-gel-derived silica coating films. J Phys Chem B 101(13):2285–2291CrossRefGoogle Scholar
  18. 18.
    Kalyanasundaram K (1982) Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord Chem Rev 46:159–244CrossRefGoogle Scholar
  19. 19.
    Santra S, Zhang P, Wang KM, Tapec R, Tan W (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73(20):4988–4993PubMedCrossRefGoogle Scholar
  20. 20.
    Bagwe RP, Yang C, Hilliard LR, Tan W (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20(19):8336–8342PubMedCrossRefGoogle Scholar
  21. 21.
    Bottinelli E, Miletto I, Caputo G, Coluccia S, Gianotti E (2008) A photoactive hybrid material based on Ru complex in mesoporous MCM-41. Nuovo Cimento B 123(10–11):1449–1458Google Scholar
  22. 22.
    Ogawa M, Nakamura T, Mori J, Kuroda K (2000) Luminescence of Tris(2,2′-bipyridine)ruthenium(II) Cations ([Ru(bpy)3]2+) adsorbed in mesoporous silica. J Phys Chem B 104:8554–8556CrossRefGoogle Scholar
  23. 23.
    Fang M, Wang Y, Zhang P, Shougui L, Xu R (2000) Spectroscopic and vapochromic properties of MCM-48-entrapped trisbipyridineruthenium (II). J Lumin 91(1–2):67–70CrossRefGoogle Scholar
  24. 24.
    Sohmiya M, Sugahara Y, Ogawa M (2007) Luminescence of Tris(2, 2′-bipyridine)ruthenium(II) Cations ([Ru(bpy)3]2+) adsorbed in mesoporous silica modified with sulphonated phenetyl group. J Phys Chem B 111(30):8836–8841PubMedCrossRefGoogle Scholar
  25. 25.
    Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126(2):462–463CrossRefGoogle Scholar
  26. 26.
    Slowing I, Trewyn BG, Lin VSY (2006) Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128(46):14792–14793PubMedCrossRefGoogle Scholar
  27. 27.
    Radu DR, Lai C-Y, Jeftinija K, Rowe EW, Jeftinija S, Lin VS-Y (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 126:13216–13217PubMedCrossRefGoogle Scholar
  28. 28.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712CrossRefGoogle Scholar
  29. 29.
    Du F, Liu J, Yu S, Li L (2008) Preparation and characterization of Pd/Si-MCM-41 with high hydrogenation activity. J Porous Mater 15(6):613–617CrossRefGoogle Scholar
  30. 30.
    Li Y, Yan B (2009) Photophysical properties of lanthanide hybrids covalently bonded to functionalized MCM-41 by modified aromatic carboxylic acids. J Fluoresc 19(2):191–201PubMedCrossRefGoogle Scholar
  31. 31.
    Krenske D, Abdo S, Van Damme H, Cruz M, Fripiat JJ (1980) Photochemical and photocatalytic properties of adsorbed organometallic compounds. 1. Luminescence quenching of Tris(2, 2′-bipyridine)ruthenium(II) and—chromium(III) in clay membranes. J Phys Chem 84:2447–2457CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Emanuela Bottinelli
    • 1
    • 2
  • Ivana Miletto
    • 1
  • Giuseppe Caputo
    • 1
  • Salvatore Coluccia
    • 1
  • Enrica Gianotti
    • 1
  1. 1.Dipartimento di Chimica IFM and NIS, Centre of ExcellenceUniversity of TurinTorinoItaly
  2. 2.NIS Laboratories at Centro dell’InnovazioneTorinoItaly

Personalised recommendations