Journal of Fluorescence

, Volume 20, Issue 1, pp 343–352 | Cite as

Solvatochromic Effect in the Optical Spectra of Calcofluor and its Relation to Fluorescent Staining of Yeast Cell Walls

  • Jaromír Plášek
  • Barbora Hošková
Original Paper


Fluorescence spectral properties of calcofluor (a popular stain used to visualize cell walls of bacteria, yeast and fungi) has been studied. The analysis of calcofluor fluorescence emission spectra measured in a wide range of solvents (including media containing chitin), and in yeast cell suspensions has revealed that the solvatochromic properties of calcofluor ensue essentially from the by solvent-solute hydrogen bonding, or from the hydrogen bonding to cell wall polysaccharides with an eventual contribution of calcofluor aggregation at the cell surface. Preliminary data suggest that calcofluor emission spectra can be employed as a practical marker of variations in the quality of yeast cell wall.


Calcofluor Absorption Fluorescence Solvatochromism Yeast cell wall Hydrogen bonds 



This work was supported by the MSM 0021620835 grant from the Ministry of Education, Youth and Sports of the Czech Republic. We also thank Dr. Marie Kodedová for yeast cell culturing, ing. M. Maxa (TechemCz, Ltd.) for valuable consultations concerning the properties of dyes used in textile industry, and Dr. I. Rosenberg (Institute of Organic Chemistry and Biochemistry, Acad. Sci. CR) for correcting chemical names related to calcofluor.


  1. 1.
    Darken MA (1962) Absorption and transport of fluorescent brightener by microorganisms. Appl Microbiol 10:387–393PubMedGoogle Scholar
  2. 2.
    Wachsmuth ED (1988) A comparison of the highly selective fluorescence staining of fungi in tissue sections with Uvitex 2B and calcofluor white M2R. Histochem J 20:215–221CrossRefPubMedGoogle Scholar
  3. 3.
    Perry JL, Miller GR (1989) Quality control slide for potassium hydroxide and cellufluor fungal preparations. J Clin Microbiol 27:1411–1412PubMedGoogle Scholar
  4. 4.
    Straton N, Hryniewicki J, Aarnaes SL, Tan G, de la Maza LM, Peterson EM (1991) Comparison of monoclonal antibody and calcofluor white stains for the detection of pneumocystis carinii from respiratory specimens. J Clin Microbiol 29:645–647Google Scholar
  5. 5.
    Harrington BJ, Hageage GJ (2003) Calcofluor white: a review of its uses and applications in clinical mycology and parasitology. Lab Med 34:361–367CrossRefGoogle Scholar
  6. 6.
    Coleman T, Madassery JV, Kobayashi GS, Nahm MH, Little JR (1989) New fluorescence assay for the quantitation of fungi. J Clin Microbiol 27:2003–2007PubMedGoogle Scholar
  7. 7.
    Horobin RW, Kiernan JA (2002) CONN’S biological stains. A handbook of dyes, stains and fluorochromes for use in biology and medicine, 10th edn. BIOS Scientific, Oxford, pp 317–318Google Scholar
  8. 8.
    Miller V, Sasala K, Hogan M (2004) Report to Project Contract No. IOM-2794-04-00. The Center for Research Information, BrookvilleGoogle Scholar
  9. 9.
    Streiblova E (1984) in Nurse P, Streiblova E (eds) The microbial cell cycle. CRC, Boca Raton, pp 127–141Google Scholar
  10. 10.
    Anonym (2005) Stilbene fluorescent whitening agents category. report submitted to the US Environmental Protection Agency, ETAD Fluorescent Whitening Agent Task ForceGoogle Scholar
  11. 11.
    Maeda H, Ishida N (1967) Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J Biochem 62:276–278PubMedGoogle Scholar
  12. 12.
    Harrington BJ, Hageage GJ (1991) Calcofluor white: tips for improving its use. Clin Microbiol Newsl 13:3–5CrossRefGoogle Scholar
  13. 13.
    Baggett JJ, Shaw JD, Sciambi CJ, Watson HA, Wendland B (2003) Fluorescent labeling of yeast. Curr Protoc Cell Biol Suppl. 20, Unit 4.13Google Scholar
  14. 14.
    Roncero C, Duran A (1985) Effect of calcofluor white and congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol 163:1180–1185PubMedGoogle Scholar
  15. 15.
    Hickey PC, Swift SR, Roca MG, Read ND (2004) Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. Methods Microbiol 34:63–87CrossRefGoogle Scholar
  16. 16.
    Sietsma JH, Wessels JGH (1990) The occurrence of glucosaminoglycan in the wall of Schizosaccharomyces pombe. J Gen Microbiol 136:2261–2265PubMedGoogle Scholar
  17. 17.
    Bacon JSD (1981) Nature and disposition of polysaccharides within the cell envelope. In: Arnold WN (ed) Yeast cell envelopes: Biochemistry, biophysics and ultrastructure (chapter 5). CRC, Boca RatonGoogle Scholar
  18. 18.
    Harrington BJ, Raper KB (1968) Use of a fluorescent brightener to demonstrate cellulose in the cellular slime molds. Appl Microbiol 16:106–113PubMedGoogle Scholar
  19. 19.
    Fincher GB (1975) Morphology and chemical composition of barley endosperm cell-walls. J Inst Brew 83:116–122Google Scholar
  20. 20.
    Wood PJ (1982) Factors affecting precipitation and spectral changes associated with complex formation between dyes and β-d-glucans. Carbohyd Res 102:283–293CrossRefGoogle Scholar
  21. 21.
    Wood PJ, Fulcher RG (1983) Dye interactions. a basis for specific detection and histochemistry of polysaccharides. J Histochem Cytochem 31:823–826PubMedGoogle Scholar
  22. 22.
    Kim S, Inglett GE (2006) Molecular weight and ionic strength dependence of fluorescence intensity of the Calcofluor/β-glucan complex in flow-injection analysis. J Food Comp Anal 19:466–472CrossRefGoogle Scholar
  23. 23.
    Grabchev I, Philipova T (2000) Photophysical and photochemical properties of some triazinestilbene fluorescent brighteners. Dyes Pigm 44:175–180CrossRefGoogle Scholar
  24. 24.
    Hoch HC, Galvani CD, Szarowski DH, Turner JN (2005) Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia 97:580–588CrossRefPubMedGoogle Scholar
  25. 25.
    Anonym (2001) Fungi-Fluor Kit. Technical Data Sheet 316. Polysciences, Inc, WarringtonGoogle Scholar
  26. 26.
    Baron EJ, Finegold SM (1990) Baily & Scott’s diagnostic microbiology, 8th edn. C.V. Mosby Company, St. LouisGoogle Scholar
  27. 27.
    Meadows MG (1984) A batch assay using calcofluor fluorescence to characterize cell wall regeneration in plant protoplasts. Anal Biochem 141:38–42CrossRefPubMedGoogle Scholar
  28. 28.
    Albani JR, Plancke YD (1998) Interaction between calcofluor white and carbohydrates of α1- acid glycoprotein. Carbohyd Res 314:169–175CrossRefGoogle Scholar
  29. 29.
    Albani JR, Sillen A, Coddeville B, Plancke YD, Engelborghs Y (1999) Dynamics of carbohydrate residues of α1-acid glycoprotein (orosomucoid) followed by red-edge excitation spectra and emission anisotropy studies of Calcofluor White. Carbohyd Res 322:87–94CrossRefGoogle Scholar
  30. 30.
    Albani JR, Sillen A, Plancke YD, Coddeville B, Engelborghs Y (2000) Interaction between carbohydrate residues of α1-acid glycoprotein (orosomucoid) and saturating concentrations of Calcofluor White. A fluorescence study. Carbohyd Res 327:333–340CrossRefGoogle Scholar
  31. 31.
    Decottignies A, Grant AM, Nichols JW, de Wet H, McInstosh DB, Goffeau A (1998) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273:12612–12622CrossRefPubMedGoogle Scholar
  32. 32.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkGoogle Scholar
  33. 33.
    Wu JJ, Li N, Li KA, Liu F (2008) J-Aggregates of diprotonated tetrakis(4- sulfonatophenyl)porphyrin induced by ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. J Phys Chem B 112:8134–8138CrossRefPubMedGoogle Scholar
  34. 34.
    Jaffe HH, Orchin J (1962) Theory and applications of UV spectroscopy. Wiley, New YorkGoogle Scholar
  35. 35.
    Lippert E (1955) Dipolmoment und Elektronenstruktur von Angeregten Molekulen. Z Naturforsch A 10:541–545 Naturforsch. Teit A, 10, 541, 1955Google Scholar
  36. 36.
    Mataga N, Kaifu Y, Koizumi M (1956) Solvent effects upon fluorescence spectra and the dipolemoments of excited molecules. Bull Chem Soc Japan 29:465–470CrossRefGoogle Scholar
  37. 37.
    Kamlet MJ, Abboud J-LM, Abraham MH, Taft RW (1983) Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α and β and some methods for simplifying the generalized solvatochromic equation. J Org Chem 48:2877–2887CrossRefGoogle Scholar
  38. 38.
    Kamlet MJ, Abboud JL, Taft RW (1977) The solvatochromic comparison method. 6. The π* scale of solvent polarities. J Am Chem Soc 99:6027–6038CrossRefGoogle Scholar
  39. 39.
    Abboud J-LM, Kamlet MJ, Taft RW (1977) Regarding a generalized scale of solvent polarities. J Am Chem Soc 99:8325–8327CrossRefGoogle Scholar
  40. 40.
    Taft RW, Kamlet MJ (1976) The solvatochromic comparison method. 2. The α-scale of solvent hydrogen-bond donor (HBD) acidities. J Am Chem Soc 98:2886–2894CrossRefGoogle Scholar
  41. 41.
    Kamlet MJ, Taft RW (1976) The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J Am Chem Soc 98:377–383CrossRefGoogle Scholar
  42. 42.
    Smit KJ, Ghiggino KP (1987) Fluorescence and photoisomerization of two stilbene-based dyes. Dyes Pigm 8:83–97CrossRefGoogle Scholar
  43. 43.
    Vergnault H, Mercier-Bonin M, Willemot RM (2004) Physicochemical parameters involved in the interaction of Saccharomyces cerevisiae cells with ion-exchange adsorbents in expanded bed chromatography. Biotechnol Prog 20:1534–1542CrossRefPubMedGoogle Scholar
  44. 44.
    Guillemot G, Lorthois S, Schmitz P, Mercier-Bonin M (2007) Evaluating the adhesion force between Saccharomyces cerevisiae yeast cells and polystyrene from shear-flow induced detachments. Chem Eng Res Design 85:800–807CrossRefGoogle Scholar
  45. 45.
    Jigami Y, Odani T (1999) Mannosylphosphate transfer to yeast mannan. Biochim Biophys Acta 1426:335–345PubMedGoogle Scholar
  46. 46.
    Klis FM, Boorsma A, De Groot PWJ (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202CrossRefPubMedGoogle Scholar
  47. 47.
    Abraham MH, Grellier PL, Prior DV, Morris JJ, Taylor PJ (1990) Hydrogen bonding. Part 10. A scale of solute hydrogen-bond basicity using log K values for complexation in tetrachloromethane. J Chem Soc Perkin Trans 2:521–529Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations