Advertisement

Journal of Fluorescence

, Volume 20, Issue 1, pp 299–303 | Cite as

Induced Intersystem Crossing at the Fluorescence Quenching of Laser Dye 7-Amino-1,3-Naphthalenedisulfonic Acid by Paramagnetic Metal Ions

  • Valery V. Volchkov
  • Vladimir L. Ivanov
  • Boris M. Uzhinov
Original Paper

Abstract

The fluorescence and triplet state quenching of 7-amino-1,3-naphthalenesulfonic acid by paramagnetic metal ions have been investigated in an aqueous medium. The basic mechanism of the fluorescence quenching involves the static and dynamic electron transfer to the paramagnetic cation. The induced S1→T1 intersystem crossing at fluorescence quenching of the fluorophore by Cu2+ cation has been found. There is a correlation between triplet state quenching rate constants and values of the efficient paramagnetic susceptibility and spin of the cations. The rate constants for the quenching pathways have been calculated.

Keywords

Fluorescence quenching Paramagnetic metal ion Amino-G-acid Triplet-triplet absorption 

References

  1. 1.
    Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum, New YorkGoogle Scholar
  2. 2.
    McClure DS (1949) Triplet-singlet transitions in organic molecules. Lifetime measurements of the triplet state. J Chem Phys 17:905CrossRefGoogle Scholar
  3. 3.
    Kasha M (1952) Collisional perturbation of spin-orbital coupling and the mechanism of fluorescence quenching. A visual demonstration of the perturbation. J Chem Phys 20:71CrossRefGoogle Scholar
  4. 4.
    McGlynn SP, Padhye MR, Kasha M (1955) Lowest triplet levels of the polyacenes. J Chem Phys 23:593Google Scholar
  5. 5.
    McGlynn SP, Azumi T, Kasha M (1964) The external heavy-atom spin orbital coupling effect. V. Absorption studies of triplet states. J Phys Chem 40:507CrossRefGoogle Scholar
  6. 6.
    Föll RE, Kramer HE, Steiner UE (1990) Role of charge-transfer and spin-orbit coupling in fluorescence quenching. A case study with oxonine and substituted benzenes. J Phys Chem 94:2476CrossRefGoogle Scholar
  7. 7.
    Wierzchaczewski M, Sidorowicz A, Lukowiak E, Strek W, Gawryszewska P (1995) J Appl Spectrosc 62(5):221–224CrossRefGoogle Scholar
  8. 8.
    Tobita S, Arakawa M, Tanaka I (1984) Electronic relaxation processes of rare-earth chelates of benzoyltrifluoroacetone. J Phys Chem 88:2697–2702CrossRefGoogle Scholar
  9. 9.
    Tobita S, Arakawa M, Tanaka I (1985) The paramagnetic metal effect on the ligand localized S1→T1 intersystem crossing in the rare-earth-metal complexes with methyl salicylate. J Phys Chem 89:5649–5654CrossRefGoogle Scholar
  10. 10.
    Guldi DM, Mody TD, Gerasimchuk NN, Magda D, Sessler JL (2000) Influence of large metal cations on the photophysical properties of texaphyrin, a rigid aromatic chromophore. J Am Chem Soc 122:8289–8298CrossRefGoogle Scholar
  11. 11.
    Chang JH, Kim HJ, Park JH, Shin Y-K, Chung Y (1999) Bull Korean Chem Soc 20(7):796–800Google Scholar
  12. 12.
    Takashima H, Kawahara H, Kitano M, Shibata S, Murakami H, Tsukahara K (2008) Metal ion-dependent fluorescent dynamics of photoexcited zinc-porphyrin and zinc-myoglobin modified with ethylenediaminetetraacetic acid. J Phys Chem B 112:15493–15502CrossRefPubMedGoogle Scholar
  13. 13.
    Ricci RW, Kilichowski KB (1974) Fluorescence quenching of the indole ring system by lanthanide ions. J Phys Chem 78(19):1953–1956CrossRefGoogle Scholar
  14. 14.
    Wierzchaczewski M, Sidorowicz A, Lukowiak E, Strek W, Gawryszewska P (1995) The effect of Gd3+ ions on luminescence of OPA-Gly. J Appl Spectrosc 62(5):221–224CrossRefGoogle Scholar
  15. 15.
    Nakamura T, Kira A, Imamura M (1982) Enhancement of the intersystem crossing of pyrene by metal ions in sodium dodecyl sulfate micelle solutions. J Phys Chem 86:3359–3363CrossRefGoogle Scholar
  16. 16.
    Chrysochoos J, Beyene K (1999) Oxidative fluorescence quenching of zinc tetraphenylporphyrin (ZnTPP) by trivalent lanthanide ions in several solvents: Role of lanthanide-induced singlet-triplet crossing. J Fluoresc 81:209–218Google Scholar
  17. 17.
    Melhuish WH (1961) Quantum efficiencies of fluorescence of organic substances—effect of solvent and concentration of fluorescent solute. J Phys Chem 65(2):229–235CrossRefGoogle Scholar
  18. 18.
    Glebov AN, Budanov AR (1997) Soros Educational J 7:44–51 in RussianGoogle Scholar
  19. 19.
    Lur’e YY (1989) Handbook of analytical chemistry. Khimia, Moscow (in Russian)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Valery V. Volchkov
    • 1
  • Vladimir L. Ivanov
    • 1
  • Boris M. Uzhinov
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations