Skip to main content
Log in

Vanillin Phosphorescence as a Probe of Molecular Mobility in Amorphous Sucrose

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Changes in molecular mobility are important in defining the stability and quality of amorphous solid foods, pharmaceuticals, and other solid biomaterials. Predictions of stability must consider matrix mobility below and above Tg (the glass transition temperature); measurement of molecular mobility in amorphous solids over time scales ranging from <10−9 s to >108 s requires specialized methods. This research investigated how the steady-state and time-resolved emission and intensity of phosphorescence from vanillin (4-hydroxy-3-methoxy benzaldehyde), a common flavor compound, can be used to probe molecular mobility when dispersed within amorphous pure sucrose films. Phosphorescence emission spectra and time-resolved intensity decays, measured in sucrose as a function of temperature in the absence of oxygen, were strongly modulated by matrix molecular mobility. Temperature had a significant effect on vanillin phosphorescence peak frequency and bandwidth, intensity, and lifetime both in the glass and in the melt. Time-resolved phosphorescence intensity decays from vanillin were multiexponential both below and above the glass transition temperature, indicating that the pure (single component) amorphous matrix was dynamically heterogeneous on the molecular level. These data show that vanillin is a promising intrinsic probe of molecular mobility and dynamic heterogeneity in amorphous solid foods and perhaps pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roos Y, Karel M (1990) Differential scanning calorimetry study of phase transitions affecting the quality of dehydrated materials. Biotech Prog 6:159–163

    Article  CAS  Google Scholar 

  2. Roos Y, Karel M (1991) Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J Food Sci 34:324–329

    Google Scholar 

  3. Roos Y, Karel M (1991) Phase transitions of mixtures of amorphous polysaccharides and sugars. Biotech Prog 7:49–53

    Article  CAS  Google Scholar 

  4. Hancock BC, Shamblin SL, Zografi G (1995) Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharmaceut Res 12:799–806

    Article  CAS  Google Scholar 

  5. Walters C (2004) Temperature dependency of molecular mobility in preserved seeds. Biophys J 86:1253–1258

    Article  CAS  PubMed  Google Scholar 

  6. Craig DQ, Royall PG, Kett VL, Hopton ML (1999) The relevance of the amorphous state of pharmaceutical dosage forms: glassy drugs and freeze dried systems. Intl J Pharmaceutics 179:179–207

    Article  CAS  Google Scholar 

  7. Schmidt SJ (2004) Water and solids mobility in foods. Adv Food Nutr Res 48:1–101

    Article  CAS  PubMed  Google Scholar 

  8. Le Meste M, Champion D, Roudaut G, Blond G, Simatos D (2002) Glass transition and food technology: a critical appraisal. J Food Sci 67:2444–2458

    Article  Google Scholar 

  9. Liu Y, Bhandari B, Zhou W (2006) Glass transition and enthalpy relaxation of amorphous food saccharides: a review. J Ag Food Chem 54:5701–5717

    Article  CAS  Google Scholar 

  10. Pravinata LV, You Y, Ludescher RD (2005) Erythrosin B phosphorescence monitors molecular mobility and dynamic heterogeneity in amorphous sucrose. Biophys J 88:3551–3561

    Article  CAS  PubMed  Google Scholar 

  11. Parker CA (1968) Photoluminescence of solutions. Elsevier, Amsterdam

    Google Scholar 

  12. Shah NK, Ludescher RD (1993) Influence of hydration on the internal dynamics of hen egg white lysozyme in the dry state. Photochem Photobiol 58:169–174

    Article  CAS  PubMed  Google Scholar 

  13. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  14. Ludescher RD, Shah NK, McCaul CP, Simon KV (2001) Beyond Tg: optical luminescence measurements of molecular mobility in amorphous solid foods. Food Hydrocoll 15:331–339

    Article  CAS  Google Scholar 

  15. Simon-Lukasik KV, Ludescher RD (2004) Erythrosin B phosphorescence as a probe of oxygen diffusion in amorphous gelatin films. Food Hydrocoll 18:621–630

    Article  CAS  Google Scholar 

  16. Lukasik KV, Ludescher RD (2006) Effect of plasticizer on dynamic site heterogeneity in cold-cast gelatin films. Food Hydrocoll 20:88–95

    Article  CAS  Google Scholar 

  17. Lukasik KV, Ludescher RD (2006) Molecular mobility in water and glycerol plasticized cold and hot cast gelatin films. Food Hydrocoll 20:96–105

    Article  CAS  Google Scholar 

  18. Shirke S, Ludescher RD (2006) Dynamic site heterogeneity in amorphous lactose and lactitol from spectral heterogeneity in erythrosin B phosphorescence. Biophys Chem 123:122–133

    Article  CAS  PubMed  Google Scholar 

  19. Shirke S, Ludescher RD (2006) Molecular mobility and glass transition in amorphous glucose, maltose and maltotriose. Carbohyd Res 340:2654–2660

    Article  Google Scholar 

  20. Schulman EM, Walling C (1972) Phosphorescence of adsorbed ionic organic molecules at room temperature. Science 178:52–54

    Article  Google Scholar 

  21. Schulman EM, Walling C (1973) Triplet state phosphorescence of adsorbed ionic organic molecules at room temperature. J Phys Chem 77:902–905

    Article  CAS  Google Scholar 

  22. Hurtubise RJ, Thompson AL, Hubbard SE (2005) Solid-phase room-temperature phosphorescence. Anal Lett 38:1823–1845

    Article  CAS  Google Scholar 

  23. Nishigaki A, Ngashima U, Uchida A, Oonishi I, Oshima S (1998) Hysteresis in the temperature dependence of phosphorescence of 4-Hydroxy-3-Hethoxybenzaldehyde (vanillin) in ethanol. J Phys Chem 102:1106–1111

    CAS  Google Scholar 

  24. Papp S, Vanderkooi JM (1989) Tryptophan phosphorescence at room temperature as a tool to study protein structure and dynamics. Photochem Photobiol 49:775–784

    Article  CAS  PubMed  Google Scholar 

  25. Tiwari RS (2008) A new determination of molecular mobility in amorphous materials. PhD. Dissertation, Rutgers University, New Brunswick, NJ

  26. Roe KD, Labuza TP (2005) Glass transition and crystallization of amorphous trehalose-sucrose mixtures. Intl J Food Prop 8:559–574

    Article  CAS  Google Scholar 

  27. Richert R (2000) Triplet state salvation dynamics: basics and applications. J Chem Phys 113:8404–8429

    Article  CAS  Google Scholar 

  28. Vanderkooi JM, Berger JW (1989) Excited triplet state used to study biological macromolecules at room temperature. Biochim Biophys Acta: Bioenerg 976:1–27

    Article  CAS  Google Scholar 

  29. Fischer CJ, Gafni A, Steel DG, Schauerte JA (2002) The triplet-state lifetime of indole in aqueous and viscous environments: significance to the interpretation of room temperature phosphorescence in proteins. J Am Chem Soc 124:10359–10266

    Article  CAS  PubMed  Google Scholar 

  30. Duchowicz R, Ferrer ML, Acuna AU (1998) Kinetic spectroscopy of erythrosin phosphorescence and delayed fluorescence in aqueous solution at room temperature. Photochem Photobiol 68:494–501

    Article  CAS  PubMed  Google Scholar 

  31. Shirke S, Takhistov P, Ludescher RD (2005) Molecular mobility in amorphous maltose and maltitol from phosphorescence of erythrosin B. J Phys Chem B 109:16119–16126

    Article  CAS  PubMed  Google Scholar 

  32. Ediger MD, Angell CA, Nagel SR (1996) Supercooled liquids and glasses. J Phys Chem 100:13200–13212

    Article  CAS  Google Scholar 

  33. Sillescu HJ (1999) Heterogeneity at the glass transition: a review. J Non-Cryst Solids 243:81–108

    Article  CAS  Google Scholar 

  34. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  35. Nishigaki A, Uchida A, Oonishi I, Ohshima S (1996) Characteristics of phosphorescence of ionic organic compounds adsorbed on filter paper. Polycyclic Arom Comp 9:323–330

    Article  CAS  Google Scholar 

  36. Gangasharan, Murthy SSN (1993) Study of α β and γ-relaxation processes in some supercooled liquids and supercooled plastic crystals. J Chem Phys 99:9865–9873

    Article  CAS  Google Scholar 

  37. Champion D, Maglione M, Niquet G, Simatos D, Le Meste M (2003) Study of α - and β- relaxation processes in supercooled sucrose liquids. J Therm Anal Calor 71:249–261

    Article  CAS  Google Scholar 

  38. Noel TR, Parker R, Ring SG (1996) A comparative study of the dielectric relaxation behavior of glucose, maltose and their mixtures with water in the liquid and glassy states. Carbohyd Res 282:193–206

    Article  CAS  Google Scholar 

  39. Kaminski K, Kaminski E, Paulch M, Ziolo J, Ngai KL (2006) The true Johari-Goldstein β-relaxation of monosaccharides. J Phys Chem B 110:25045–25049

    Article  CAS  PubMed  Google Scholar 

  40. Kaminski K, Kaminski E, Hensel-Bielowka S, Chelmecka E, Paluch M, Ziolo J, Wlodarczyk P, Ngai KL (2008) Identification of the molecular motions responsible for the slower secondary (β) relaxation in sucrose. J Phys Chem B 112:7662–7668

    Article  CAS  PubMed  Google Scholar 

  41. Kaminski K, Kaminski E, Wlodarczyk P, Pawlus D, Kimla D, Kasprzycka A, Paluch M, Ziolo J, Szeja W, Ngai KL (2008) Dielectric studies on mobility of the glycosidic linkage in seven disaccharides. J Phys Chem B 112:12816–12823

    Article  CAS  PubMed  Google Scholar 

  42. Doolittle AK, Doolittle DB (1957) Studies in Newtonian flow. V. Further verification of free space viscosity equation. J Appl Phys 28:901–905

    Article  CAS  Google Scholar 

  43. Miller DP, Krochta JM (1997) Oxygen and aroma barrier properties of edible films: a review. Tr Food Sci Tech 8:228–237

    Article  CAS  Google Scholar 

  44. Roos Y (1995) Phase transitions in foods. Academic, San Diego

    Google Scholar 

  45. Oversteegen SM, Roth R (2005) General methods of free volume theory. J Chem Phys 122:1–12

    Article  Google Scholar 

  46. Kilburn D, Dlubek G, Pionteck J, Alam MA (2006) Free volume in poly (n-alkyl methacrylate)s from positron lifetime and PVT experiments and its relation to the structural relaxation. Polymer 47:7774–7785

    Article  CAS  Google Scholar 

  47. Kasapis D (2008) Beyond the free volume theory: introduction of the concept of cooperativity to the chain dynamics of biopolymers during vitrificatin. Food Hydrocoll 22:84–90

    Article  CAS  Google Scholar 

  48. Richert R (1997) Evidence of dynamic heterogeneity near Tg from the time resolved inhomogeneous broadening of optical line shapes. J Phys Chem 101:6323–6326

    CAS  Google Scholar 

  49. Richert R (2001) Spectral selectivity in the slow beta relaxation of a molecular glass. Europhys Lett 54:767–773

    Article  CAS  Google Scholar 

  50. Shamblin SL, Tang XL, Chang LQ, Hancock BC, Pikal MJ (1999) Characterization of the time scales of molecular motion in pharmaceutically important glasses. J Phys Chem 103:4113–4121

    CAS  Google Scholar 

  51. McCaul CP, Ludescher RD (1999) Room temperature phosphorescence from tryptophan and halogenated tryptophan analogs in amorphous sucrose. Photochem Photobiol 70:166–171

    Article  CAS  Google Scholar 

  52. Shah NK, Ludescher RD (1995) Phosphorescence of probes of the glassy state in amorphous sucrose. Biotech Prog 11:540–544

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Ludescher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, R.S., Ludescher, R.D. Vanillin Phosphorescence as a Probe of Molecular Mobility in Amorphous Sucrose. J Fluoresc 20, 125–133 (2010). https://doi.org/10.1007/s10895-009-0530-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0530-7

Keywords

Navigation