Journal of Fluorescence

, Volume 20, Issue 1, pp 371–376 | Cite as

The Interaction of Serum Albumin with Cholesterol Containing Lipid Vesicles

  • Tanja Meierhofer
  • Jean M. H. van den Elsen
  • Petra J. Cameron
  • Xavier Muñoz-Berbel
  • A. Toby A. Jenkins
Short Communication


In this paper, the interaction of both human blood serum (the primary fraction of which is serum albumin) and pure human serum albumin (HSA) with surface immobilised lipid vesicles was measured by combined Surface Plasmon Resonance (SPR) and Surface Plasmon enhanced Fluorescence (SPEFS), and fluorescence microscopy. It was found that both blood serum and HSA showed specific binding to vesicles which contained cholesterol, resulting in increased membrane permeability and release of encapsulated fluorescent dye. This effect was not seen with heat inactivated blood serum, heat inactivated HSA or in vesicles not containing cholesterol. These results suggest that HSA may have a physiological role over and beyond that of fatty acid carrier, possibly acting to regulate vascular endothelial cell cholesterol concentration.


Human-serum-albumin Surface-plasmon-enhanced-fluorescence Vesicles Liposomes Cholesterol 


  1. 1.
    Zhao Y, Marcel YL (1996) Serum albumin is a significant intermediate in cholesterol transfer between cells and lipoproteins. Biochemistry 35:7174–7180CrossRefPubMedGoogle Scholar
  2. 2.
    Goldwasser P, Feldman J (1997) Association of serum albumin and mortality risk&#x2009. J Clin Epidemiology 50:693–703CrossRefGoogle Scholar
  3. 3.
    Djoussé L, Rothman KJ, Cupples LA, Arnett DK, Ellison RC (2003) Relation between serum albumin and carotid atherosclerosis the NHLBI family heart study. Stroke 4:54–57Google Scholar
  4. 4.
    Sacks FM (2006) The apolipoprotein story. Atherosclerosis Supplements 7:23–27CrossRefPubMedGoogle Scholar
  5. 5.
    Ha J-S, Ha C-E, Chao JT, Petersen CE, Theriault A, Bhagavan NV (2003) Human serum albumin and its structural variants mediate cholesterol efflux from cultured endothelial cells. Biochim Biophys Acta Mol Cell Res 1640:119–128CrossRefGoogle Scholar
  6. 6.
    Deliconstantinos G, Tsopanakis C, Karayiannakosv P (1986) Evidence for the existence of non-esterified cholesterol carried by albumin in rat serum. Atherosclerosis 61:67–75CrossRefPubMedGoogle Scholar
  7. 7.
    Kirby C, Clarke J, Gregoriadis G (1980) Effect of the cholesterol content of small unilamellar liposomes on their stabiliy in-vivo and in-vitro. J Biochem 186:591–598Google Scholar
  8. 8.
    Mui BLS, Cullis PR, Pritchard PH, Madden TD (1994) Influence of plasma on the osmotic sensitivity of large unilamellar vesicles prepared by extrusion. J Biological Chem 269:7364–7370Google Scholar
  9. 9.
    Vareiro MLMM, Liu J, Knoll W, Zak K, Williams D, Jenkins ATA (2005) Surface plasmon fluorescence measurements of human chorionic gonadotrophin: Role of antibody orientation in obtaining enhanced sensitivity and limit of detection&#x2009. Anal Chem 77:2426–2431CrossRefPubMedGoogle Scholar
  10. 10.
    Booth C, Bushby RJ, Cheng Y, Evans SD, Liu Q, Zhang H (2001) Synthesis of novel biotin anchors. Tetrahedron 57:9859–9866CrossRefGoogle Scholar
  11. 11.
    Dye purchased from Invitrogen. Formal name: (6-(((4,4-difluoro-5-(2-pyrrolyl)-4-bora-3a,4a-diaza-s-indacene-3-yl)styryloxy)acetyl) aminohexanoic acid, sulfotetrafluorophenyl ester, sodium salt, Invitrogen)Google Scholar
  12. 12.
    Williams TL, Jenkins ATA (2008) Measurement of the binding of cholera toxin to GM1 gangliosides on solid supported lipid bilayer vesicles and inhibition by europium (III) chloride. J Amer Chem Soc 130:6438–6443CrossRefGoogle Scholar
  13. 13.
    Yu F, Persson B, Löfäs S, Knoll W (2004) Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy. J Am Chem Soc 126:8902–8903 Parallel multispot detection of target hybridization to surface-bound probe oligonucleotides of different base mismatch by surface-plasmon field-enhanced fluorescence microscopyCrossRefPubMedGoogle Scholar
  14. 14.
    Liebermann T, Knoll W (2003) Langmuir 19:1567–1572Google Scholar
  15. 15.
    Burman JD, Leung E, Atkins KL, O’Seaghdha MN, Lango L, Bernadó P, Bagby S, Svergun DI, Foster TJ, Isenman D, van den Elsen JMH (2008) Interaction of human complement with Sbi, a staphylococcal immunoglobulin-binding protein — Indications of a novel mechanism of complement evasion by Staphylococcus aureus. J Biol Chem 283:17579–17593CrossRefPubMedGoogle Scholar
  16. 16.
    Moscho A, Orwar O, Chiu DT, Modi BP, Zare RN (1996) Rapid preparation of giant unilamellar vesicles. Proc Nat Acad Sci USA 93:11443–11447CrossRefPubMedGoogle Scholar
  17. 17.
    Oldfield E, Chapman C (1972) Dynamics of lipids in membranes — heterogeneity and role of cholesterol. FEBS Letters 23:285–297CrossRefPubMedGoogle Scholar
  18. 18.
    Corvera E, Mouritsen OG, Singer MA, Zuckermann MJ (1992) The permeability and the effect of acyl-chain length for phospholipid bilayers containing cholesterol — theory and experiment. Biochim Biophys Acta Biomembr 1107:261–270CrossRefGoogle Scholar
  19. 19.
    Biju SS, Talegaonkar S, Mishra PR, Khar RK (2006) Vesicular systems: an overview. Indian J Pharm Sci 68:141–53CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tanja Meierhofer
    • 1
  • Jean M. H. van den Elsen
    • 2
  • Petra J. Cameron
    • 2
  • Xavier Muñoz-Berbel
    • 2
  • A. Toby A. Jenkins
    • 2
  1. 1.Institute for Biophysics and Physical BiochemistryUniversität RegensburgRegensburgGermany
  2. 2.Departments of Chemistry and Biology & BiochemistryUniversity of BathBathUK

Personalised recommendations