Skip to main content
Log in

Elucidating Anomalous Protein Diffusion in Living Cells with Fluorescence Correlation Spectroscopy—Facts and Pitfalls

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Anomalous protein diffusion has been frequently observed in intracellular fluids and on membranes of living cells. Indeed, a large variety of specimen, from bacteriae to mammalian cells, and several non-invasive measurement techniques, e.g. fluorescence correlation spectroscopy, have revealed that the mean square displacement (MSD) of proteins in vivo is often characterized by an anomalous power-law increase \(\langle r(t)^2\rangle\sim t^\alpha\) with 0.5 < α ≤ 0.8. Here, we review these results with a particular focus on fluorescence correlation spectroscopy, and we report on possible causes of variations of the anomaly degree α. Moreover, we highlight generic consequences of anomalous diffusion that are likely to play an important role in the cellular context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Banks DS, Fradin C (2005) Anomalous diffusion of proteins due to molecular crowding. Biophys J 89(5):2960–2971

    Article  CAS  PubMed  Google Scholar 

  2. Berg HC (1993) Random walks in biology. Princeton University Press, Princeton

    Google Scholar 

  3. Berry H (2002) Monte carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys J 83:1891–1901

    Article  CAS  PubMed  Google Scholar 

  4. Boucheaud JP, Georges A (1990) Anomalous diffusion in disordered media—statistical mechanisms, models, and physical applications. Phys Rep 195:127–293

    Article  Google Scholar 

  5. Crane JM, Verkman AS (2008) Long-range nonanomalous diffusion of quantum dot-labeled aquaporin-1 water channels in the cell plasma membrane. Biophys J 94:702–713

    Article  CAS  PubMed  Google Scholar 

  6. Dix JA, Verkman AS (2008) Crowding effects on diffusion in solutions and cells. Annu Rev Biophys 37:247–263

    Article  CAS  PubMed  Google Scholar 

  7. Ellis RJ, Minton AP (2003) Cell biology: join the crowd. Nature 425:27–28

    Article  CAS  PubMed  Google Scholar 

  8. Elowitz MB, Surette MG, Wolf PE, Stock JB, Leibler S (1999) Protein mobility in the cytoplasm of Escherichia coli. J Bacteriol 181:197–203

    CAS  PubMed  Google Scholar 

  9. Elsner M, Hashimoto H, Simpson JC, Cassel D, Nilsson T, Weiss M (2003) Spatiotemporal dynamics of the COPI vesicle machinery. EMBO Rep 4:1000–1004

    Article  CAS  PubMed  Google Scholar 

  10. Enderlein J, Gregor I, Patra D, Fitter J (2004) Art and artefacts of fluorescence correlation spectroscopy. Curr Pharm Biotechnol 5:155–161

    Article  CAS  PubMed  Google Scholar 

  11. Fradin C, Abu-Arish A, Granek R, Elbaum M (2003) Fluorescence correlation spectroscopy close to a fluctuating membrane. Biophys J 84:2005–2020

    Article  CAS  PubMed  Google Scholar 

  12. Gennerich A, Schild D (2000) Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used. Biophys J 79:3294–3306

    Article  CAS  PubMed  Google Scholar 

  13. Golding I, Cox EC (2006) Physical nature of bacterial cytoplasm. Phys Rev Lett 96:098102

    Article  PubMed  Google Scholar 

  14. Griffiths G, Warren G, Quinn P, Mathieu-Costello O, Hoppeler H (1984) Density of newly synthesized plasma membrane proteins in intracellular membranes. I. Stereological studies. J Cell Biol 98:2133–2141

    Article  CAS  PubMed  Google Scholar 

  15. Guigas G, Weiss M (2008) Sampling the cell with anomalous diffusion—the discovery of slowness. Biophys J 94:90

    Article  CAS  PubMed  Google Scholar 

  16. Guigas G, Kalla C, Weiss M (2007) Probing the nano-scale viscoelasticity of intracellular fluids in living cells. Biophys J 93:316–323

    Article  CAS  PubMed  Google Scholar 

  17. Guigas G, Kalla C, Weiss M (2007) The degree of macromolecular crowding in the cytoplasm and nucleoplasm of mammalian cells is conserved. FEBS Lett 581:5094–5098

    Article  CAS  PubMed  Google Scholar 

  18. He Y, Burov S, Metzler R, Barkai E (2008) Random time-scale invariant diffusion and transport coefficients. Phys Rev Lett 101(5):058101

    Article  CAS  PubMed  Google Scholar 

  19. Hess ST, Webb WW (2002) Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83:2300–2317

    Article  CAS  PubMed  Google Scholar 

  20. Kohler RH, Schwille P, Webb WW, Hanson MR (2000) Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy. J Cell Sci 113:3921–3930

    CAS  PubMed  Google Scholar 

  21. Lubelski A, Sokolov IM, Klafter J (2008) Nonergodicity mimics inhomogeneity in single particle tracking. Phys Rev Lett 100(25):250602

    Article  PubMed  Google Scholar 

  22. Lubelski A, Klafter J (2009) Fluorescence correlation spectroscopy: the case of subdiffusion. Biophys J 96(6):2055–2063

    Article  CAS  PubMed  Google Scholar 

  23. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Article  CAS  PubMed  Google Scholar 

  24. Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A Math Gen 37:R161–R208

    Article  Google Scholar 

  25. Minton A (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119:2863–2869

    Article  CAS  PubMed  Google Scholar 

  26. Nie S, Chiu DT, Zare RN (1994) Probing individual molecules with confocal fluorescence microscopy. Science 266:1018–1021

    Article  CAS  PubMed  Google Scholar 

  27. Quinn P, Griffiths G, Warren G (1984) Density of newly synthesized plasma membrane proteins in intracellular membranes ii. biochemical studies. J Cell Biol 98:2142–2147

    Article  CAS  PubMed  Google Scholar 

  28. Rigler R (2001) Fluorescence correlation spectroscopy. Springer, Berlin

    Google Scholar 

  29. Rigler R, Mets U, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background – analysis of translational diffusion. Eur Biophys J 22:169–175

    Article  CAS  Google Scholar 

  30. Ritchie K, Shan XY, Kondo J, Iwasawa K, Fujiwara T, Kusumi A (2005) Detection of non-brownian diffusion in the cell membrane in single molecule tracking. Biophys J 88:2266–2277

    Article  CAS  PubMed  Google Scholar 

  31. Ritchie K, Shan X-Y, Kondo J, Iwasawa K, Fujiwara T, Kusumi A (2005) Detection of non-brownian diffusion in the cell membrane in single molecule tracking. Biophys J 88:2266–2277

    Article  CAS  PubMed  Google Scholar 

  32. Saxton MJ (2007) A biological interpretation of transient anomalous subdiffusion. I. qualitative model. Biophys J 92:1178–1191

    Article  CAS  PubMed  Google Scholar 

  33. Saxton MJ (2001) Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study. Biophys J 81:2226–2240

    Article  CAS  PubMed  Google Scholar 

  34. Saxton MJ (1994) Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J 66:394–401

    Article  CAS  PubMed  Google Scholar 

  35. Saxton MJ (2002) Chemically limited reactions on a percolation cluster. J Chem Phys 116:203–208

    Article  CAS  Google Scholar 

  36. Schutz GJ, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73:1073–1080

    Article  CAS  PubMed  Google Scholar 

  37. Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36:176–182

    Article  CAS  PubMed  Google Scholar 

  38. Smith PR, Morrison IE, Wilson N, Fernandez KM, Cherry RJ (1999) Anomalous diffusion of major histocompatibility complex class i molecules on hela cells determined by single particle tracking. Biophys J 76:3331–3344

    Article  CAS  PubMed  Google Scholar 

  39. Tolic-Norrelykke IM, Munteanu EL, Thon G, Oddershede L, Berg-Sorensen K (2004) Anomalous diffusion in living yeast cells. Phys Rev Lett 93:078102

    Article  PubMed  Google Scholar 

  40. Toomre D, Keller P, White J, Olivo JC, Simons K (1999) Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J Cell Sci 112:21–33

    CAS  PubMed  Google Scholar 

  41. Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298:677–689

    Article  CAS  PubMed  Google Scholar 

  42. Weiss M (2003) Stabilizing turing patterns with subdiffusion in systems with low particle numbers. Phys Rev E 68:036213.1–036213.5

    Article  Google Scholar 

  43. Weiss M, Hashimoto H, Nilsson T (2003) Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys J 84(6):4043–4052

    Article  CAS  PubMed  Google Scholar 

  44. Weiss M, Elsner M, Kartberg F, Nilsson T (2004) Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys J 87:3518–3524

    Article  CAS  PubMed  Google Scholar 

  45. Wong IY, Gardel ML, Reichman DR, Weeks ER, Valentine MT, Bausch AR, Weitz DA (2004) Anomalous diffusion probes microstructure dynamics of entangled f-actin networks. Phys Rev Lett 92:178101

    Article  CAS  PubMed  Google Scholar 

  46. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric gfps into membrane microdomains of live cells. Science 296:913–916

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Modeling and Simulation in the Biosciences (BIOMS) in Heidelberg. NM was funded by the Harmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malchus, N., Weiss, M. Elucidating Anomalous Protein Diffusion in Living Cells with Fluorescence Correlation Spectroscopy—Facts and Pitfalls. J Fluoresc 20, 19–26 (2010). https://doi.org/10.1007/s10895-009-0517-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0517-4

Keywords

Navigation