Journal of Fluorescence

, Volume 20, Issue 1, pp 365–369 | Cite as

Detection of Bifidobacterium Species-specific 16S rDNA Based on QD FRET Bioprobe

  • JunFeng Jiang
  • ZhiHui Peng
  • Le Deng
  • Guang Li
  • LinLi Chen
Short Communication


Fluorescence resonance energy transfer (FRET) that consists of quantum dot as donors and organic fluorophore dyes as acceptors has been a very important method to detect biomolecules such as nucleic acids. In this work, we established a new FRET detection system of Bifidobacterium species-specific 16S rDNA using QD—ROX FRET bioprobe, in which 525 nm QD-DNA conjugation consisted of the carboxyl-modified QD and the amino-modified DNA in the presence of EDC. Both ROX-DNA and the conjugation above could hybridize with the target DNA after forming the QD—ROX bioprobe. When the hybridization made the distance between the QD and ROX to meet FRET effect needed, 525 nm QD fluorescence intensity decreased and ROX fluorescence intensity increased. In the control, there was no notable change of fluorescence intensities without target DNA. It is very clear that the change of the QD and ROX fluorescence intensities provide the good base and guaranty for this rapid and simple detection system.


Quantum dots Sequence alignment Bioprobe FRET 16S rDNA detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016CrossRefPubMedGoogle Scholar
  2. 2.
    Watson. A, Wu. X , Bruchez. M, (2003), Lighting up cells with quantum dots, Biotechniques. 4(2), 296–300, 302–303Google Scholar
  3. 3.
    Samia AC, Dayal S, Burda C (2006) Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy. Photochem Photobiol 82(3):617–625CrossRefPubMedGoogle Scholar
  4. 4.
    Gill R, Zayats M, Willner I (2008) Semiconductor Quantum Dots for Bioanalysis. Biosensors 47(40):7602–7625Google Scholar
  5. 5.
    Kherlopian AR, Song T, Duan Q, Neimark MA, Po MJ, Gohagan JK, Laine AF (2005) A review of imaging techniques for systems biology. BMC Syst Biol 2:74CrossRefGoogle Scholar
  6. 6.
    Sukhanova A, Nabiev I (2008) Fluorescent nanocrystal-encoded microbeads for multiplexed cancer imaging and diagnosis. Crit Rev Oncol Hematol 68(1):39–59CrossRefPubMedGoogle Scholar
  7. 7.
    Misra RD (2008) Quantum dots for tumor-targeted drug delivery and cell imaging. Nanomed 3(3):271–274CrossRefGoogle Scholar
  8. 8.
    Kim S, Bawendi MG (2003) Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J Am Chem Soc 125(48):14652–14653CrossRefPubMedGoogle Scholar
  9. 9.
    Yu. K, Zaman. B, Romanova. S, Wang. D. S, Ripmeester. J. A, (2005), Sequential Synthesis of Type II Colloidal CdTe/CdSe Core-Shell Nanocrystals, small. 1(3), 332–338Google Scholar
  10. 10.
    Cady NC, Strickland AD, Batt CA (2007) Optimized linkage and quenching strategies for quantum dot molecular beacons. Mol Cell Probes 21:116–124CrossRefPubMedGoogle Scholar
  11. 11.
    Huang S, Xiao Q, He ZK, Liu Y, Tinnefeld P, Su XR, Peng XN (2008) A high sensitive and specific QDs FRET bioprobe for MNase. Chem Commun 7(45):5990–5992CrossRefGoogle Scholar
  12. 12.
    Xu C, Xing B, Rao J (2006) A self-assembled quantum dot probe for detecting beta-lactamase activity. Biochem Biophys Res Commun 344(3):931–935CrossRefPubMedGoogle Scholar
  13. 13.
    Liu HY, Vu TQ (2007) Identification of Quantum Dot Bioconjugates and Cellular Protein Co-localization by Hybrid Gel Blotting. Nano Lett 7(4):1044–1049CrossRefPubMedGoogle Scholar
  14. 14.
    Numnuam A, Chumbimuni-Torres KY, Xiang Y, Bash R, Thavarungkul P, Kanatharana P, Pretsch E, Wang J, Bakker E (2008) Aptamer-Based Potentiometric Measurements of Proteins Using Ion-Selective Microelectrodes. Anal Chem 80(3):707–712CrossRefPubMedGoogle Scholar
  15. 15.
    Ma N, Dooley CJ, Kelley SO (2006) RNA-Templated Semiconductor Nanocrystals. J Am Chem Soc 128(39):12598–12599CrossRefPubMedGoogle Scholar
  16. 16.
    Ho YP, Kung MC, Yang S, Wang TH (2005) Multiplexed Hybridization Detection with Multicolor Colocalization of Quantum Dot Nanoprobes. Nano Lett 5(9):1693–1697CrossRefPubMedGoogle Scholar
  17. 17.
    Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) High-sensitivity bacterial detection using biotin- tagged phage and quantum-dot nanocomplexes. PNAS. 103(13):4841–4845CrossRefPubMedGoogle Scholar
  18. 18.
    Song L, Ahn S, Walt DR (2005) Detecting biological warfare agents. Anal Chem 11(10):1629–1632Google Scholar
  19. 19.
    Chen Z, Li G, Zhang L, Jiang JJ, Li Z, Peng Z, Deng L (2008) A new method for the detection of ATP using a quantum-dot-tagged aptamer. Anal Bioanal Chem 392(6):1185–1188CrossRefPubMedGoogle Scholar
  20. 20.
    Kok RG, de Waal A, Schut F, Welling GW, Weenk G, Hellingwerf KJ (1996) Specific detection and analysis of a probiotic Bifidobacterium strain in infant feces. Appl Environ Microbiol. 62(10):3668–3672PubMedGoogle Scholar
  21. 21.
    Wang RF, Cao WW, Cerniglia CE (1996) PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl Environ Microbiol 62(4):1242–1247PubMedGoogle Scholar
  22. 22.
    Kaufmann P, Pfefferkorn A, Teuber M, Meile L (1997) Identification and quantification of Bifidobacterium species isolated from food with genus-specific 16 S rRNA-targeted probes by colony hybridization and PCR. Appl EnvironMicrobiol. 63(4):1268–1273Google Scholar
  23. 23.
    Matsuki T, Watanabe K, Tanaka R, Fukuda M, Oyaizu H (1999) Distribution of bifidobacterial species in human intestinal microflora examined with 16 S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol 65(10):4506–4512PubMedGoogle Scholar
  24. 24.
    Hermanson GT (1996) Bioconjugate techniques. Academic Press, New YorkGoogle Scholar
  25. 25.
    Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-Assembly of CdSe–ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. J Am Chem Soc 122(49):12142–12150CrossRefGoogle Scholar
  26. 26.
    Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126(1):301–310CrossRefPubMedGoogle Scholar
  27. 27.
    Hohng S, Ha T (2005) Single-molecule quantum-dot fluorescence resonance energy transfer. Chemphyschem 6(5):956–60CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • JunFeng Jiang
    • 1
  • ZhiHui Peng
    • 1
  • Le Deng
    • 1
  • Guang Li
    • 1
  • LinLi Chen
    • 1
  1. 1.Department of MicrobiologyHunan Normal UniversityChangshaPeople’s Republic of China

Personalised recommendations