The Fluorescence Study of Interaction Between Bovine Serum Albumin and Polyacrylic Acid

  • Yasemin Budama Battal
  • Murat Topuzogullari
  • Zeynep Mustafaeva
Original Paper


The complex formation of Bovine Serum Albumin (BSA) with anionic polyelectrolyte (polyacrylic acid, PAA) in aqueous solution was studied by a fluorescence technique, pH titration and HPLC analysis. The character of the interactions and solubility of the polycomplex particles depends on the BSA/PAA ratios and the pH of solution. The interaction at pH > pI (isoelectric point of BSA) (pH 6.0–7.0) is negligible weak and at pH 5.0 results with the formation of stable water-soluble polycomplexes at a wide range of protein/polymer ratios. The fluorescence intensity of BSA sharply decreased when an different amount of PAA was added and its maximum wavelength shifts towards the blue region. The protein molecules in the structure of soluble polycomplex particles are densely covered by the shelf of a polymer coil and practically “fenced off” from the water environment. This effect was reinforced by the increase of protein components. Existence of soluble and insoluble PAA-BSA complexes have been observed at pH < pI (pH 4.0–4.3). These soluble complexes characterized by the structure of particles in which protein molecules are densely covered by the shelf of a polymer coil. By the increase in the protein concentration, these complexes aggregate to an interpolymer species.


Fluorescence Protein Polyanion Polycomplex 



This research was supported by grant from T.R. Prime Ministry State Planning Organization (Project Number 25-DPT-07-04-01).


  1. 1.
    Mattison KW, Dubin PL, Brittain IJJ (1998) Complex formation between bovine serum albumin and strong polyelectrolytes: effects of polymer charge density. Phys Chem 102:3830–3839Google Scholar
  2. 2.
    Petrov RV, Mustafaev MI, Norimov AS (1992) Physicochemical criteria for the construction of artificial immunomodulators and immunogens on the basis of polyelectrolyte complexes. Sov Med Rev D Immunol. Harwood Academic Publishers GmbH, UK, pp 1–113Google Scholar
  3. 3.
    Lee WY, Sehon H (1977) Abrogation of reaginic antibodies with modified allergens, H. Nature 267:618–619PubMedCrossRefGoogle Scholar
  4. 4.
    Putnam D, Kopecek J (1995) Polymer conjugates with anticancer activity. In: Peppas NA, Langer RS (eds) Polymer conjugates with anticancer activity, Biopolymer II. Springer, Berlin, pp 57–123Google Scholar
  5. 5.
    Monji N, Hoffman AS (1987) A novel immunoassay system and bioseparation process based on thermal phase separating polymers. Appl Biochem Biotechnol 14:107. doi: 10.1007/BF02798429 also US Patent No. 4,780,409. October 25, 1989PubMedCrossRefGoogle Scholar
  6. 6.
    Bae YH, Okano T, Hsu R, Kim SW (1987) Thermo-sensitive polymers as on-off switches for drug release. Macromol Chem Rapid Commun 8:481CrossRefGoogle Scholar
  7. 7.
    Abuchouwski A, Van Es T, Palezul NC, Davis FF (1977) J Biol Chem 252:3578–81Google Scholar
  8. 8.
    Kabanov VA (2004) From synthetic polyelectrolytes to polymer-subunit vaccines. Pure Appl Chem 76(9):1659–1677. doi: 10.1351/pac200476091659 CrossRefGoogle Scholar
  9. 9.
    H Morawetz WL (1952) Hughes the interaction of proteins with synthetic polyelectrolytes. I. Complexing of bovine serum albumin. J Phys Chem 56:64. doi: 10.1021/j150493a014 CrossRefGoogle Scholar
  10. 10.
    Kabanov VA, Evdakov VP, Mustafaev MI, Antipina AD (1977) Cooperative interaction of serum albumin with quaternized poly-4-vinylpyridine and structure of the complexes. Mol Biol (Moscow) 11:582Google Scholar
  11. 11.
    Nguyen TQ (1986) Interactions of human hemoglobin with high-molecular-weight dextran sulfate and diethylaminoethyl dextran. Makromol Chem 2187:2567. doi: 10.1002/macp.1986.021871106 CrossRefGoogle Scholar
  12. 12.
    Xia J, Dubin PL (1994) Protein-polyelectrolyte complexes. In: Dubin P, Bock J, Davis R, Schulz DN, Thies C (eds) Macromolecular complexes in chemistry and biology. Springer-Verlag, London, pp 247–272Google Scholar
  13. 13.
    Mustafaev MI, Norimov AS (1990) Polymer-metal complexes of protein antigens-new highly effective immunogens. Biomed Sci 1:274–278PubMedGoogle Scholar
  14. 14.
    Mustafaev MI, Babakhin AA, Popov AN, Litvinov IS, Merkushov AV, Gushin IS (1990) The effect of structural-chemical characterististics of water-soluble polyelectrolyte complexes of ovalbumin on their immunological properties. Mol Biol (Moscow) 24:358Google Scholar
  15. 15.
    Kabanov VA, Mustafaev MI, Belova VV, Evdakov VP (1978) Two types of soluble complexes of bovine serum albumin with polyelectrolytes. Biophysics (Moscow) 23:789Google Scholar
  16. 16.
    Berdick M, Morawetz H (1954) The interaction of catalase with synthetic polyelectrolytes. J Biol Chem 206:959PubMedGoogle Scholar
  17. 17.
    Sacco D, Bonneaux F, Dellacherie E (1988) Interaction of haemoglobin with dextran sulphates and the oxygen-binding properties of the covalent conjugates. Int J Biol Macromol 10:305. doi: 10.1016/0141-8130(88)90009-8 CrossRefGoogle Scholar
  18. 18.
    Lenk, T., Thies, C.: (1987) In: Coulombic Interactions in Macromolecular Systems, Eisenberg A, Bailey FE. Eds, American Chemical Society, Washington, DC, Chapter 8.Google Scholar
  19. 19.
    Veis A (1991) Complex coacervates involving protein biopolymer pairs, Polym. Prepr. Am Chem Soc, Div Plym Chem 32:1–596Google Scholar
  20. 20.
    Burgess DJ, Carlesa JE (1984) Microelectrophoretic studies of gelatin and acacia for the prediction of complex coacervation. J Colloid Interface Sci 98:1Google Scholar
  21. 21.
    Park JM, Muhoberac BB, Dubin PL, Xia J (1992) Effects of protein charge heterogeneity in protein-polyelectrolyte complexation. Macromolecules 25:290–295. doi: 10.1021/ma00027a047 CrossRefGoogle Scholar
  22. 22.
    Mustafaev M, Bayulken S, Ergen E, Erkol AY, Ardagil N (2001) Radiation-induced formation of polyacrylic acid protein covalent conjugates. Radiat Phys Chem 60:567–575. doi: 10.1016/S0969-806X(00)00423-0 CrossRefGoogle Scholar
  23. 23.
    Kokufuta E, Shimizu H, Nakamura I (1981) Macromolecules 14:1178. doi: 10.1021/ma50006a008 CrossRefGoogle Scholar
  24. 24.
    Seyrek E, Dubin PL, Tribet C, Gamble EA (2003) Ionic strength dependence of protein-polyelectrolyte interactions. Biomacromolecules 4:273–282. doi: 10.1021/bm025664a PubMedCrossRefGoogle Scholar
  25. 25.
    Mustafaev MI, Kabanov VA (1981) Vysocomol Soedin Ser A 23A:2271Google Scholar
  26. 26.
    Dincer B, Mustafaev MI, Bayulken S (1997) High performance liquid chromatography study of water-soluble ternary polyacrylamide-metal-protein complexes. J App Polym Sci 65:37–40CrossRefGoogle Scholar
  27. 27.
    Hatano T, Hori M, Hemingway RW, Yoshida T (2003) Size exclusion chromatographic analysis of polyphenol-serum albumin complexes. Phytochemistry 63:817–823. doi: 10.1016/S0031-9422(03)00340-6 PubMedCrossRefGoogle Scholar
  28. 28.
    Dilgimen AS, Mustafaeva Z, Demchenko M, Kaneko T, Osada Y, Mustafaev M (2001) Water soluble covalent conjugates of bovine serum albumin with anionic poly-(N-isopropylacrylamide) and their immunogenecity. Biomaterials 22:2383–2392. doi: 10.1016/S0142-9612(00)00425-7 PubMedCrossRefGoogle Scholar
  29. 29.
    Başalp A, Mustafaeva Z, Mustafaev MI, Bermek E (2000) Immune response to 17 β-estradiol involved in polymer gel-antigen specificity and affinity of hybridoma clones. Hybridoma 19:495–499. doi: 10.1089/027245700750053995 PubMedCrossRefGoogle Scholar
  30. 30.
    Wen YP, Dubin PL (1997) Potentiometric studies of the interaction of bovine serum albumin and poly(dimethyldiallylamonium chloride). Macromolecules 30:7856–7861. doi: 10.1021/ma971152q CrossRefGoogle Scholar
  31. 31.
    Teramoto A, Watanabe K, Brown JW, Izuka E, Abe KJ (1994) Macromol Sci Pure Appl Chem A31(1):53–64Google Scholar
  32. 32.
    Xia J, Dubin LP, Morishita Y, Sato T, Muhaberac BB (1995) Biopolymers 35:411–418. doi: 10.1002/bip.360350408 CrossRefGoogle Scholar
  33. 33.
    Güney O, Saraç AS, Mustafaev M (1997) Fluorescence and turbidimetry study of complexation of human serum albumin with polycations. J Bioact Compet Polym 12:231–244Google Scholar
  34. 34.
    Cha HJ, Izumi T, Kokufuta E, Frank CW (1992) Polymer Prepr 33(1):872–881Google Scholar
  35. 35.
    He XM, Carter DC (1993) Atomic structure and chemistry of human serum albumin. Nature 358:209–215CrossRefGoogle Scholar
  36. 36.
    Brown, J.W.: (1976) (Ed.) Serum Albumin. Pergamon Pres, New York.Google Scholar
  37. 37.
    Peters IT (1985) Serum Albumin. Adv Protein Chem 37:161. doi: 10.1016/S0065-3233(08)60065-0 PubMedCrossRefGoogle Scholar
  38. 38.
    Burstein EA, Vedenkina NS, Ivkova MN (1973) Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol 18:263–279. doi: 10.1111/j.1751-1097.1973.tb06422.x PubMedCrossRefGoogle Scholar
  39. 39.
    Peters T (1996) All about albumin: biochemistry, genetics and medicalapplications. Acad, San DiegoGoogle Scholar
  40. 40.
    Filenko A, Demchenko M, Mustafaeva Z, Osada Y, Mustafaev M (2000) Fluorescence study of Cu2+ induced interaction between albumin and anionic polyelectrolytes. Biomacromolecules 7:2383–2392Google Scholar
  41. 41.
    Akkilic N, Mustafaeva Z, Mustafaev M (2007) High performance liquid chromatography study of water-soluble complexes and covalent conjugates of polyacrylic acid with bovine serum albumin. J Appl Polym Sci 105:3108–3120. doi: 10.1002/app.26366 CrossRefGoogle Scholar
  42. 42.
    Topuzogulları M, Cimen NS, Mustafaeva Z, Mustafaev M (2007) Molecular-weight distribution and structural transformation in water-soluble complexes of poly(acrylicacid) and bovine serum albumin. Eur Polym J 43:2935–2946. doi: 10.1016/j.eurpolymj.2007.04.025 CrossRefGoogle Scholar
  43. 43.
    Miller ML (1978) Encycl Polym Sci Technol 1:445Google Scholar
  44. 44.
    Demchenko AP (1986) Ultravioled spectroscopy of proteins. Springer Verlag, HeidelbergGoogle Scholar
  45. 45.
    Lakowich JR (1986) Principles of fluorescence specytroscopy. Plenum, New York and London, p 496Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yasemin Budama Battal
    • 1
  • Murat Topuzogullari
    • 1
  • Zeynep Mustafaeva
    • 1
  1. 1.Department of Bioengineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey

Personalised recommendations