Journal of Fluorescence

, Volume 19, Issue 4, pp 705–713 | Cite as

Photofunctional Polyurethane Nanofabrics Doped by Zinc Tetraphenylporphyrin and Zinc Phthalocyanine Photosensitizers

  • Jiří Mosinger
  • Kamil Lang
  • Pavel Kubát
  • Jan Sýkora
  • Martin Hof
  • Lukáš Plíštil
  • Bedřich MosingerJr.
Original Paper


Polymeric polyurethane nanofabrics doped by zinc tetraphenylporphyrin (ZnTPP) and/or zinc phthalocyanine (ZnPc) photosensitizers were prepared by the electrospinning method and characterized by microscopic methods, steady-state and time-resolved fluorescence, and absorption spectroscopy. Nanofabrics doped by both ZnTPP and ZnPc efficiently harvest visible light to generate triplet states and singlet oxygen O2(1Δg) with a lifetime of about 15 μs in air atmosphere. The energy transfer between the excited singlet states of ZnTPP and ground states of ZnPc is described in details. All nanofabrics have bactericidal surfaces and photooxidize inorganic and organic substrates. ZnTPP and ZnPc in the polyurethane nanofabrics are less photostable than incorporated free-base tetraphenylporphyrin (TPP).


Nanofabric Singlet oxygen Energy transfer Bactericidal Photooxidation 



This research was supported by the Czech Science Foundation (Nos. 203/08/0831, 203/07/1424, and 203/06/1244)


  1. 1.
    Maisch T, Baier J, Franz B, Maier M, Landthaler M, Szeimies RM, Bäumler W (2007) The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc Natl Acad Sci USA 104:7223–7228 doi: 10.1073/pnas.0611328104 PubMedCrossRefGoogle Scholar
  2. 2.
    Patrice T (2004) Photodynamic therapy. Royal Society of Chemistry, LondonGoogle Scholar
  3. 3.
    Lissi MV, Encias E, Lemp E, Rubio MA (1993) Singlet oxygen O2(1Δg) bimolecular processes-solvent and compartmentalization effect. Chem Rev 93:699–723 doi: 10.1021/cr00018a004 CrossRefGoogle Scholar
  4. 4.
    Lang K, Mosinger J, Wagnerová DM (2004) Photophysical properties of porhyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy. Coord Chem Rev 248:321–350 doi: 10.1016/j.ccr.2004.02.004 CrossRefGoogle Scholar
  5. 5.
    Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1758 doi: 10.1021/cr010371d PubMedCrossRefGoogle Scholar
  6. 6.
    Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J Phys Chem Ref Data 24:663–1021Google Scholar
  7. 7.
    Voeikov VL (2005) Biological oxidation: over a century of hardship for the concept of active oxygen. Cell Mol Biol 51:663–675PubMedGoogle Scholar
  8. 8.
    McGlinchey SM, McCoy CP, Gorman SP, Jones DS (2008) Key biological issues in contact lens development. Expert Rev Med Devices 5:581–590 doi: 10.1586/17434440.5.5.581 PubMedCrossRefGoogle Scholar
  9. 9.
    Brady C, Bell SEJ, Parsons C, Gorman SP, Jones DS, McCoy CP (2007) Novel porphyrin-incorporated hydrogels for photoactive intraocular lens biomaterials. J Phys Chem B 111:527–534 doi: 10.1021/jp066217i PubMedCrossRefGoogle Scholar
  10. 10.
    Mosinger J, Jirsák O, Kubát P, Lang K, Mosinger B Jr (2007) Bactericidal nanofabrics based on photosensitized formation of singlet oxygen. J Mater Chem 17:164–166 doi: 10.1039/b614617a CrossRefGoogle Scholar
  11. 11.
    Wilkinson F, Helman WP, Ross AB (1993) Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J Phys Chem Ref Data 22:113–262Google Scholar
  12. 12.
    Arnbjerg J, Johnsen M, Nielsen CB, Jorgensen M, Ogilby PR (2007) Effect of sensitizer protonation on singlet oxygen production in aqueous and nonaqueous media. J Phys Chem A 111:4573–4583 doi: 10.1021/jp066843f PubMedCrossRefGoogle Scholar
  13. 13.
    Ricchelli F (1995) Photophysical properties of porphyrins in biological membranes. J Photochem Photobiol B Biol 29:109–118 doi: 10.1016/1011-1344(95)07155-U CrossRefGoogle Scholar
  14. 14.
    Jirsák O, Sanetrník F, Lukáš D, Kotek V, Martinová L, Chaloupek J, CZ pat. 294274 (2003);PCT/CZ2004/000056 (2004)Google Scholar
  15. 15.
    Kapusta P, Wahl M, Benda A, Hof M, Enderlein J (2007) Fluorescence lifetime correlation spectroscopy. J Fluoresc 17:43–48 doi: 10.1007/s10895-006-0145-1 PubMedCrossRefGoogle Scholar
  16. 16.
    Lukaszewicz A, Karolczak J, Kowalska D, Maciejewski A, Ziolek M, Steer RP (2007) Photophysical processes in electronic states of zinc tetraphenyl porphyrin accessed on one- and two-photon excitation in the soret region. Chem Phys 331:359–372 doi: 10.1016/j.chemphys.2006.11.006 CrossRefGoogle Scholar
  17. 17.
    Rogers JE, Nguyen KA, Hufnagle DC, McLean DG, Su W, Gossett KM, Burke AR, Vinogradov SA, Pachter R, Fleitz PA (2003) Observation and interpretation of annulated porphyrins: studies on the photophysical properties of meso-tetraphenylmetalloporphyrins. J Phys Chem A 107:11331–11339 doi: 10.1021/jp0354705 CrossRefGoogle Scholar
  18. 18.
    Rajesh CS, Capitosti GJ, Cramer SJ, David A, Modarelli DA (2001) Photoinduced electron-transfer within free base and zinc porphyrin containing poly(amide). Dendrimers J Phys Chem B 105:10175–10188 doi: 10.1021/jp010575y CrossRefGoogle Scholar
  19. 19.
    Ogunsipe A, Maree D, Nyokong T (2003) Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J Mol Struct 650:131–140 doi: 10.1016/S0022-2860(03)00155-8 CrossRefGoogle Scholar
  20. 20.
    Ito F, Ishibashi Y, Khan SR, Miyasaka H, Kameyama K, Morisue M, Satake A, Ogawa K, Kobuke Y (1996) Photoinduced electron transfer and excitation energy transfer in directly linked zinc porphyrin/zinc phthalocyanine composite. Langmuir 12:2932–2938 doi: 10.1021/la960240l CrossRefGoogle Scholar
  21. 21.
    Kroon JM, Koehorst RBM, vanDijk M, Sanders GM, Sudhölter EJR (1997) Self-assembling properties of non-ionic tetraphenylporphyrins and discotic phthalocyanines carrying oligo(ethylene oxide) alkyl or alkoxy units. J Mater Chem 7:615–624 doi: 10.1039/a605328i CrossRefGoogle Scholar
  22. 22.
    Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum, New YorkGoogle Scholar
  23. 23.
    Carmichael I, Hug GL (1986) Triplet–triplet absorption spectra of organic molecules in condensed phases. J Phys Chem Ref Data 15:1–250CrossRefGoogle Scholar
  24. 24.
    Ricciardi G, Rosa A, Baerends EJ (2001) Ground and excited states of zinc phthalocyanine studied by density functional methods. J Phys Chem A 105:5242–5254 doi: 10.1021/jp0042361 CrossRefGoogle Scholar
  25. 25.
    Ijeri VS, Daasbjerg K, Ogilby PR, Poulsen L (2008) Spatial and Temporal Electrochemical Control of Singlet Oxygen Production and Decay in Photosensitized Experiments. Langmuir 24:1070–1079 doi: 10.1021/la7028577 PubMedCrossRefGoogle Scholar
  26. 26.
    Tsushima M, Tokuda K, Ohsaka T (1994) Use of hydrodynamic chronocoulometry for simultaneous determination of diffusion coefficients and concentrations of dioxygen in various media. Anal Chem 66:4551–4556 doi: 10.1021/ac00096a024 CrossRefGoogle Scholar
  27. 27.
    Mosinger J, Mosinger B (1995) Photodynamic sensitizers assay: rapid and sensitive iodometric measurement. Experientia 51:106–109 doi: 10.1007/BF01929349 PubMedCrossRefGoogle Scholar
  28. 28.
    Hof FR, Whitten DG (1975) In: Smith KM (ed) Porphyrins and Metalloporphyrins. Elsevier, Amsterdam, pp 667–695Google Scholar
  29. 29.
    Keizer SP, Bench BA, Gorun SM, Stillman MJ (2003) Spectroscopy and Electronic Structure of Electron Deficient Zinc Phthalocyanines. J Am Chem Soc 125:7067–7085 doi: 10.1021/ja0299710 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jiří Mosinger
    • 1
    • 2
  • Kamil Lang
    • 2
  • Pavel Kubát
    • 3
  • Jan Sýkora
    • 3
  • Martin Hof
    • 3
  • Lukáš Plíštil
    • 4
  • Bedřich MosingerJr.
    • 5
  1. 1.Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  2. 2.Institute of Inorganic Chemistry, v.v.i.Academy of Sciences of the Czech RepublicŘežCzech Republic
  3. 3.J. Heyrovský Institute of Physical Chemistry, v.v.i.Academy of Sciences of the Czech RepublicPraha 8Czech Republic
  4. 4.Elmarco, s.r.o.Liberec 9Czech Republic
  5. 5.Mount Sinai School of MedicineNew YorkUSA

Personalised recommendations