Journal of Fluorescence

, Volume 19, Issue 2, pp 311–316 | Cite as

Self-assembly Drives Quantum Dot Photoluminescence

  • J. Plain
  • Y. Sonnefraud
  • P. Viste
  • G. Lérondel
  • S. Huant
  • P. Royer
Original Paper


Engineering the spectral properties of quantum dots can be achieved by a control of the quantum dots organization on a substrate. Indeed, many applications of quantum dots as LEDs are based on the realization of a 3D architecture of quantum dots. In this contribution, we present a systematic study of the quantum dot organization obtained on different chemically modified substrates. By varying the chemical affinity between the quantum dots and the substrate, the quantum dot organization is strongly modified from the 2D monolayer to the 3D aggregates. Then the photoluminescence of the different obtained samples has been systematically studied and correlated with the quantum dot film organization. We clearly show that the interaction between the substrate and the quantum dot must be stronger than the quantum dot–quantum dot interaction to avoid 3D aggregation and that these organization strongly modified the photoluminescence of the film rather than intrinsic changes of the quantum dot induced by pure surface chemistry.


Self assembly Quantum dot Photoluminescence 



We thank support from the “Action Concertée Nanosciences 2004” (NANOPTIP project) and the European Social funds FEDER.


  1. 1.
    Park JH, Kim JY, Chin BD, Kim YC, Kim JK, Park OO (2004) White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer. Nanotechnology 15:1217–1220, doi: 10.1088/0957-4484/15/9/018 CrossRefGoogle Scholar
  2. 2.
    Nozik AJ (2002) Quantum dot solar cells. Physica E 14:115–120, doi: 10.1016/S1386-9477(02)00374-0 CrossRefGoogle Scholar
  3. 3.
    Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851, doi: 10.1021/ic0508371 PubMedCrossRefGoogle Scholar
  4. 4.
    Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018, doi: 10.1126/science.281.5385.2016 PubMedCrossRefGoogle Scholar
  5. 5.
    Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46, doi: 10.1038/nbt764 PubMedCrossRefGoogle Scholar
  6. 6.
    Sukhanova A, Devy J, Venteo L, Kaplan H, Artemyev M, Oleinikov V et al (2004) Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal Biochem 324:60–67, doi: 10.1016/j.ab.2003.09.031 PubMedCrossRefGoogle Scholar
  7. 7.
    Klimov VI (2004) Semiconductor and metal nanocrystals. Marcel Dekker, New YorkGoogle Scholar
  8. 8.
    Tang Z, Wang Y, Kotov NA (2002) Semiconductor nanoparticles on solid substrates: film structure, intermolecular interactions, and polyelectrolyte effects. Langmuir 18:7035–7040, doi: 10.1021/la025601d CrossRefGoogle Scholar
  9. 9.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427, doi: 10.1126/science.1069156 PubMedCrossRefGoogle Scholar
  10. 10.
    Pacifico J, Jasieniak J, Górnez DE, Mulvaney P (2006) Tunable 3D arrays of quantum dots: synthesis and luminescence properties. Small 2:199–203, doi: 10.1002/smll.200500226 PubMedCrossRefGoogle Scholar
  11. 11.
    Plain J, Pallandre A, Nysten B, Jonas AM (2006) Nanotemplated crystallization of organic molecules. Small 2:892–897, doi: 10.1002/smll.200600059 PubMedCrossRefGoogle Scholar
  12. 12.
    Boutin C, Jaffiol R, Plain J, Royer P (2008) Surface modified single molecules free-diffusion evidenced by fluorescence correlation spectroscopy. J Fluoresc. doi: 10.1007/s10895-008-0361-y
  13. 13.
    Pallandre A, Glinel K, Jonas AM, Nysten B (2004) Binary nanopatterned surfaces prepared from alkylsilane monolayers. Nano Lett 4:365–371, doi: 10.1021/nl035045n CrossRefGoogle Scholar
  14. 14.
    Eigler FS, Georger J, Bhatia SK, Calvert J, Shriver-Lake LC, Bredehorst R (1991) Immobilization of active agents on substrates with a silane and heterobifunctional crosslinking agent. United States Patent 5077210Google Scholar
  15. 15.
    Chevalier N, Nasse MJ, Woehl JC, Reiss P, Bleuse J, Chandezon F et al (2005) CdSe-single-nanoparticle based active tips for near-field optical microscopy. Nanotechnology 16:613–618, doi: 10.1088/0957-4484/16/4/047 CrossRefGoogle Scholar
  16. 16.
    Sonnefraud Y, Chevalier N, Motte J-F, Huant S, Reiss P, Bleuse J et al (2006) Near-field optical imaging with a CdSe single-nanocrystal based active tip. Opt Express 14:10596–10602, doi: 10.1364/OE.14.010596 CrossRefGoogle Scholar
  17. 17.
    Kagan CR, Murray CB, Nirmal M, Bawendi MG (1996) Electronic energy transfer in CdSe quantum dot solids. Phys Rev Lett 76:1517–1520, doi: 10.1103/PhysRevLett.76.1517 PubMedCrossRefGoogle Scholar
  18. 18.
    Kagan CR, Murray CB, Bawendi MG (1996) Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys Rev B 54:8633–8643, doi: 10.1103/PhysRevB.54.8633 CrossRefGoogle Scholar
  19. 19.
    Franzl T, Shovel A, Rogach AL, Gaponik N, Klar TA, Eychmüller A et al (2005) High-rate unidirectional energy transfer in directly assembled CdTe nanocrystal bilayers. Small 1:392–395, doi: 10.1002/smll.200400074 PubMedCrossRefGoogle Scholar
  20. 20.
    Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Academic Press, New YorkGoogle Scholar
  21. 21.
    Butt HJ, Graf K, Kappl M (2003) Physics and chemistry of interfaces. Wiley-VCH, WeinheimCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. Plain
    • 1
  • Y. Sonnefraud
    • 2
  • P. Viste
    • 1
  • G. Lérondel
    • 1
  • S. Huant
    • 2
  • P. Royer
    • 1
  1. 1.Laboratoire de Nanotechnologie et d’Instrumentation Optique, LRC CEA/LETI, ICD FRE CNRS 2848Université de Technologie de TroyesTroyes cedexFrance
  2. 2.Institut Néel, CNRS and Université Joseph FourierGrenoble cedex 9France

Personalised recommendations