Skip to main content
Log in

Self-assembly Drives Quantum Dot Photoluminescence

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Engineering the spectral properties of quantum dots can be achieved by a control of the quantum dots organization on a substrate. Indeed, many applications of quantum dots as LEDs are based on the realization of a 3D architecture of quantum dots. In this contribution, we present a systematic study of the quantum dot organization obtained on different chemically modified substrates. By varying the chemical affinity between the quantum dots and the substrate, the quantum dot organization is strongly modified from the 2D monolayer to the 3D aggregates. Then the photoluminescence of the different obtained samples has been systematically studied and correlated with the quantum dot film organization. We clearly show that the interaction between the substrate and the quantum dot must be stronger than the quantum dot–quantum dot interaction to avoid 3D aggregation and that these organization strongly modified the photoluminescence of the film rather than intrinsic changes of the quantum dot induced by pure surface chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Park JH, Kim JY, Chin BD, Kim YC, Kim JK, Park OO (2004) White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer. Nanotechnology 15:1217–1220, doi:10.1088/0957-4484/15/9/018

    Article  CAS  Google Scholar 

  2. Nozik AJ (2002) Quantum dot solar cells. Physica E 14:115–120, doi:10.1016/S1386-9477(02)00374-0

    Article  CAS  Google Scholar 

  3. Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851, doi:10.1021/ic0508371

    Article  PubMed  Google Scholar 

  4. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018, doi:10.1126/science.281.5385.2016

    Article  PubMed  CAS  Google Scholar 

  5. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46, doi:10.1038/nbt764

    Article  PubMed  CAS  Google Scholar 

  6. Sukhanova A, Devy J, Venteo L, Kaplan H, Artemyev M, Oleinikov V et al (2004) Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal Biochem 324:60–67, doi:10.1016/j.ab.2003.09.031

    Article  PubMed  CAS  Google Scholar 

  7. Klimov VI (2004) Semiconductor and metal nanocrystals. Marcel Dekker, New York

    Google Scholar 

  8. Tang Z, Wang Y, Kotov NA (2002) Semiconductor nanoparticles on solid substrates: film structure, intermolecular interactions, and polyelectrolyte effects. Langmuir 18:7035–7040, doi:10.1021/la025601d

    Article  CAS  Google Scholar 

  9. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427, doi:10.1126/science.1069156

    Article  PubMed  CAS  Google Scholar 

  10. Pacifico J, Jasieniak J, Górnez DE, Mulvaney P (2006) Tunable 3D arrays of quantum dots: synthesis and luminescence properties. Small 2:199–203, doi:10.1002/smll.200500226

    Article  PubMed  CAS  Google Scholar 

  11. Plain J, Pallandre A, Nysten B, Jonas AM (2006) Nanotemplated crystallization of organic molecules. Small 2:892–897, doi:10.1002/smll.200600059

    Article  PubMed  CAS  Google Scholar 

  12. Boutin C, Jaffiol R, Plain J, Royer P (2008) Surface modified single molecules free-diffusion evidenced by fluorescence correlation spectroscopy. J Fluoresc. doi:10.1007/s10895-008-0361-y

  13. Pallandre A, Glinel K, Jonas AM, Nysten B (2004) Binary nanopatterned surfaces prepared from alkylsilane monolayers. Nano Lett 4:365–371, doi:10.1021/nl035045n

    Article  CAS  Google Scholar 

  14. Eigler FS, Georger J, Bhatia SK, Calvert J, Shriver-Lake LC, Bredehorst R (1991) Immobilization of active agents on substrates with a silane and heterobifunctional crosslinking agent. United States Patent 5077210

  15. Chevalier N, Nasse MJ, Woehl JC, Reiss P, Bleuse J, Chandezon F et al (2005) CdSe-single-nanoparticle based active tips for near-field optical microscopy. Nanotechnology 16:613–618, doi:10.1088/0957-4484/16/4/047

    Article  CAS  Google Scholar 

  16. Sonnefraud Y, Chevalier N, Motte J-F, Huant S, Reiss P, Bleuse J et al (2006) Near-field optical imaging with a CdSe single-nanocrystal based active tip. Opt Express 14:10596–10602, doi:10.1364/OE.14.010596

    Article  CAS  Google Scholar 

  17. Kagan CR, Murray CB, Nirmal M, Bawendi MG (1996) Electronic energy transfer in CdSe quantum dot solids. Phys Rev Lett 76:1517–1520, doi:10.1103/PhysRevLett.76.1517

    Article  PubMed  CAS  Google Scholar 

  18. Kagan CR, Murray CB, Bawendi MG (1996) Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys Rev B 54:8633–8643, doi:10.1103/PhysRevB.54.8633

    Article  CAS  Google Scholar 

  19. Franzl T, Shovel A, Rogach AL, Gaponik N, Klar TA, Eychmüller A et al (2005) High-rate unidirectional energy transfer in directly assembled CdTe nanocrystal bilayers. Small 1:392–395, doi:10.1002/smll.200400074

    Article  PubMed  CAS  Google Scholar 

  20. Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Academic Press, New York

    Google Scholar 

  21. Butt HJ, Graf K, Kappl M (2003) Physics and chemistry of interfaces. Wiley-VCH, Weinheim

    Book  Google Scholar 

Download references

Acknowledgements

We thank support from the “Action Concertée Nanosciences 2004” (NANOPTIP project) and the European Social funds FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Plain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plain, J., Sonnefraud, Y., Viste, P. et al. Self-assembly Drives Quantum Dot Photoluminescence. J Fluoresc 19, 311–316 (2009). https://doi.org/10.1007/s10895-008-0417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0417-z

Keywords

Navigation