Advertisement

Journal of Fluorescence

, Volume 19, Issue 1, pp 169–177 | Cite as

Photophysics and Electrochemistry of some Thione Far-Red/Near-IR Triplet Emitters

  • Rachel C. Evans
  • Peter Douglas
  • Christopher J. Winscom
Original Paper

Abstract

The photophysics and cyclic voltammetry of two novel phosphorescent thiones, 2,2-dimethyl-indan-1-one-3-thione (DMIKT) and 2,2-dimethyl-indan-1,3-dithione (DMIDT), and three known phosphorescent thiones, 4H-pyran-4-thione (PT), 4H-1-benzopyran-4-thione (BPT) and 2,2-dimethylindan-1-thione (DMIT), have been characterised and compared. The phosphorescence emission of DMIT, DMIKT and DMIDT extends from the red into the near-IR spectral region. The additional carbonyl or thione group of DMIKT and DMIDT causes a significant shift in the emission maxima to 680 nm compared to that of DMIT, at 637 nm, in perfluorinated hydrocarbons. In acetonitrile the emission maxima of DMIKT and DMIDT are at 696 and 706 nm, respectively, and the spectra show vibronic bands which extend out beyond 850 nm. There is a significant reduction in triplet lifetime along this series (from 44 (±2) μs (DMIT) to 10 ((±0.8) μs (DMIKT) in perfluorinated solvents, and 8.6 (±0.5) (DMIT), 1.3 (±0.5) (DMIKT) and 0.35 (±0.07) μs (DMIDT) in acetonitrile), as well as a reduction in the rate constant for ground-state quenching of the triplet, (from 9.8 ((±0.9) to 3.5 ((±0.6) and 1.3 ((±0.2) × 109 mol−1 dm3 s−1 for the same compounds). The addition of the C=O or C=S groups also causes a decrease in phosphorescence quantum yield with the highest emission quantum yield obtained for DMIT (Φ P = 0.149 (±0.015)). Electrochemical studies show that while PT and BPT exhibit irreversible redox behaviour, DMIT, DMIKT and DMIDT all show at least one reversible reduction wave attributed to a one-electron process centred on the C=S moiety. The suitability of these lumophores for use in OLEDs is discussed.

Keywords

Thiones Phosphorescence Triplet emitters Infrared OLED 

Notes

Acknowledgements

RCE would like to acknowledge the University of Wales Swansea (UWS) for provision of a research studentship and Kodak European R&D for financial support. Thanks are extended to Dr Chris P. Morley at Cardiff University for use of the cyclic voltammetry equipment and for useful discussion. Mass spectra were recorded by the EPSRC National Mass Spectrometry Centre located at UWS. Mr Ian Matthews (UWS) is acknowledged for technical support (NMR).

References

  1. 1.
    Hung LS, Chen CH (2002) Recent progress of molecular organic electroluminescent materials and devices. Mater Sci Eng Rep 39(5–6):143–222 doi: 10.1016/S0927-796X(02)00093-1 CrossRefGoogle Scholar
  2. 2.
    Geffroy B, le Roy P, Prat C (2006) Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym Int 55(6):572–582 doi: 10.1002/pi.1974 CrossRefGoogle Scholar
  3. 3.
    Baldo MA, Thompson ME, Forrest SR (2000) High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature 403(6771):750–753 doi: 10.1038/35001541 PubMedCrossRefGoogle Scholar
  4. 4.
    Yersin H (2004) Triplet emitters for OLED applications. Mechanisms of exciton trapping and control of emission properties. Top Curr Chem 241:1–26Google Scholar
  5. 5.
    Evans RC, Douglas P, Winscom CJ (2006) Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord Chem Rev 250(15–16):2093–2126 doi: 10.1016/j.ccr.2006.02.007 CrossRefGoogle Scholar
  6. 6.
    Kunkely H, Vogler A (2001) Luminescent metal complexes: diversity of excited states. Top Curr Chem 213:143–182CrossRefGoogle Scholar
  7. 7.
    Bhattacharyya K, Das PK, Ramamurthy V, Rao VP (1986) Triplet-state photophysics and transient photochemistry of cyclic enethiones—a laser flash photolysis study. J Chem Soc, Faraday Trans II 82:135–147 doi: 10.1039/f29868200135 CrossRefGoogle Scholar
  8. 8.
    Steer RP, Ramamurthy V (1988) Photophysics and intramolecular photochemistry of thiones in solution. Acc Chem Res 21(10):380–386 doi: 10.1021/ar00154a005 CrossRefGoogle Scholar
  9. 9.
    Maciejewski A, Steer RP (1993) The photophysics, physical photochemistry, and related spectroscopy of thiocarbonyls. Chem Rev 93(1):67–98 doi: 10.1021/cr00017a005 CrossRefGoogle Scholar
  10. 10.
    Maciejewski A, Szymanski M, Steer RP (1986) Thermally activated delayed S1 fluorescence of aromatic thiones. J Phys Chem 90(23):6314–6318 doi: 10.1021/j100281a051 CrossRefGoogle Scholar
  11. 11.
    Szymanski M, Steer RP, Maciejewski A (1987) The phosphorescence of 4H-pyran-4-thione: Large quantum yields from room-temperature fluid solutions. Chem Phys Lett 135(3):243–248 doi: 10.1016/0009-2614(87)85149-7 CrossRefGoogle Scholar
  12. 12.
    Maciejewski A, Szymanski M, Steer RP (1988) Photophysics and photochemistry of thione triplets in fluid solution. J Phys Chem 92(24):6939–6944 doi: 10.1021/j100335a020 CrossRefGoogle Scholar
  13. 13.
    Sikorski M, Khemlinskii IV, Augustyniak W, Wilkinson F (1996) Triplet state decay of some thioketones in solution. J Chem Soc, Faraday Trans 92(19):3487–3490 doi: 10.1039/ft9969203487 CrossRefGoogle Scholar
  14. 14.
    Szymanski M, Maciejewski A, Steer RP (1988) Radiationless decay of aromatic thiones in solution selectively excited to their S3, S2, S1 and T1 states. J Phys Chem 92(9):2485–2489 doi: 10.1021/j100320a019 CrossRefGoogle Scholar
  15. 15.
    Maciejewski A, Jakubowska A, Dutkiewicz E, Augustyniak W (1996) Spectral and photophysical properties of aromatic thiones in micellar systems: xanthione as convenient absorption and emission probes. J Colloid Interface Sci 177(2):528–541 doi: 10.1006/jcis.1996.0067 CrossRefGoogle Scholar
  16. 16.
    Milewski M, Sikorski M, Maciejewski A, Mir M, Wilkinson F (1997) Primary photophysical properties of 4H-1-benzopyran-4-thione in cyclodextrin complexes. J Chem Soc, Faraday Trans 93(17):3029–3034 doi: 10.1039/a702062g CrossRefGoogle Scholar
  17. 17.
    Sikorski M, Wilkinson F, Steer RP (1998) Photophysics of aromatic thioketones supported on cellulose. J Chem Soc, Faraday Trans 94(13):1855–1859 doi: 10.1039/a802424c CrossRefGoogle Scholar
  18. 18.
    Becker RS, Chakravorti S, Gartner CA, Miguel MG (1993) Photosensitizers—comprehensive photophysics, photochemistry, and theory of coumarins, chromones, their homologs and thione analogs. J Chem Soc, Faraday Trans 89(7):1007–1009 doi: 10.1039/ft9938901007 CrossRefGoogle Scholar
  19. 19.
    Kunkely H, Vogler A (2008) Telluroxanthone: a new type of triplet emitter. Inorg Chem Commun 11(1):36–38 doi: 10.1016/j.inoche.2007.10.010 CrossRefGoogle Scholar
  20. 20.
    Yeung LL, Yip YC, Luh T-Y (1990) Transition-metal promoted reactions: W(CO)6-mediated desulfurdimerization of dithioketals—evidence for a thione intermediate. J Org Chem 55(6):1874–1881 doi: 10.1021/jo00293a037 CrossRefGoogle Scholar
  21. 21.
    Nishio T, Okuda N, Kashima C (1996) Intramolecular [2+2] photocycloaddition of 2-allylindane-1-thiones. Liebigs Ann 1:117–120Google Scholar
  22. 22.
    Ranu BC, Jana U (1999) A new redundant rearrangement of aromatic ring fused cyclic alpha-hydroxydithiane derivatives. Synthesis of aromatic ring fused cyclic 1,2-diketones with one-carbon ring expansion. J Org Chem 64(17):6380–6386 doi: 10.1021/jo990634s CrossRefGoogle Scholar
  23. 23.
    Jeong I-L, Nagao Y (1999) Intermolecular tandem carbopalladation–carbocyclic one-atom ring-expansion reaction using hydroxy methoxyallenylindanones: novel synthesis of 4-oxo-alpha-tetralones. Synlett 5:576–578Google Scholar
  24. 24.
    Pederson BS, Scheibye S, Nilsson NH, Lawesson S-O (1978) Studies on organophosphorus compounds. 10. Synthesis of thioketones. Bull Soc Chim Belg 87(3):223–228Google Scholar
  25. 25.
    Scheibye S, Shabana R, Lawesson S-O, Romming C (1982) Studies on organo-phosphorus compounds: reactions of ketones with 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide. Tetahedron 38(7):993 doi: 10.1016/0040-4020(82)85078-3 CrossRefGoogle Scholar
  26. 26.
    Brown NMB, Bladon P (1965) Proton magnetic resonance spectra of 4-pyrone, 1-thia-4-pyrone, 4-thiopyrone and 1-thia-4-thiopyrone. Spectrochim Acta [A] 21(7):1277Google Scholar
  27. 27.
    Crosby GA, Demas JN (1971) Measurement of photoluminescence quantum yields—review. J Phys Chem 75(8):991 doi: 10.1021/j100678a001 CrossRefGoogle Scholar
  28. 28.
    Lacowicz JR (1999) Principles of fluorescence spectroscopy 2nd Ed. Kluwer Academic/Plenum, New YorkGoogle Scholar
  29. 29.
    Seybold PG, Gouterman M (1969) Porphyrins. 13. Fluorescence spectra and quantum yields. J Mol Spectrosc 31(1):1 doi: 10.1016/0022-2852(69)90335-X CrossRefGoogle Scholar
  30. 30.
    Burdzinski G, Maciejewski A, Buntinx G, Poizat O, Lefumeux C (2004) Ultrafast quenching of the excited S-2 state of benzopyranthione by acetonitrile. Chem Phys Lett 384(4–6):332–338 doi: 10.1016/j.cplett.2003.12.029 CrossRefGoogle Scholar
  31. 31.
    Maciejewski A (1990) The application of perfluoroalkanes as solvents in spectral, photophysical and photochemical studies. J Photochem Photobiol A 50(2):87–131 doi: 10.1016/1010-6030(90)87046-E CrossRefGoogle Scholar
  32. 32.
    Turro NJ (1991) Modern molecular photochemistry. University Science Books, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Rachel C. Evans
    • 1
    • 3
  • Peter Douglas
    • 1
  • Christopher J. Winscom
    • 2
  1. 1.Department of ChemistryUniversity of Wales SwanseaSwanseaUK
  2. 2.Kodak European ResearchCambridgeUK
  3. 3.Department of ChemistryUniversity of CoimbraCoimbraPortugal

Personalised recommendations