Skip to main content
Log in

Spectral Investigations of Solvatochromism and Preferential Solvation on 1,4-Dihydroxy-2,3-Dimethyl-9,10-Anthraquinone

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Solvatochromic and preferential solvation of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone (DHDMAQ) have been investigated using optical absorption and fluorescence emission techniques. Optical absorption spectra of DHDMAQ in different solvents show the intra molecular charge transfer band in the region 400–550nm. The observed blue shift with solvent polarity indicates the delocalisation of the excited state, owing to reduction in quasiaromaticity of the chelate rings formed by intra molecular hydrogen bonds, due to electrostatic or hydrogen bonding interaction. This is also confirmed by the observed low oscillator strength and the transition dipole moment. The observed quantum yield of DHDMAQ in different solvents is due to the inter molecular hydrogen bond in the excited state in addition to the intra molecular hydrogen bond. It also reveals from the low oscillator strength, which indicates that the radiative decay is low. Excited state dipole moment of DHDMAQ is calculated by solvatochromic data and it shows a lower value than ground state dipole moment. The preferential solvation parameter shows that in dimethyl formamide (DMF) + ethanol mixture, the DHDMAQ is preferentially solvated by ethanol in DMF rich region and by DMF in ethanol rich region. In the case of DMF + dichloromethane mixture DHDMAQ is preferentially solvated by DMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reichardt C (1994) Chem Rev 94:2319

    Article  CAS  Google Scholar 

  2. Inamdar SR, Nadaf YF, Mulimani BG (2003) J Mol Struct (Theochem) 624:47

    Article  CAS  Google Scholar 

  3. O’Neil ML, Kruus P, Burk RC (1993) Can J Chem 71:1984

    Google Scholar 

  4. Kamlet KJ, Abbound JKM, Abraham MH, Taft RW (1983) J Org Chem 48:2877

    Article  CAS  Google Scholar 

  5. Toselli NM, Silber JJ, Anunziata JD (1988) Spectrochim Acta 44A:829

    CAS  Google Scholar 

  6. Linert W, Strauss B, Herlinger E, Reichardt C (1992) J Phys Org Chem 5:275

    Article  CAS  Google Scholar 

  7. Catalan J (1995) J Org Chem 60:8315

    Article  CAS  Google Scholar 

  8. Tanaka T, Kohno H, Murakami M, Shimada R, Kagami S (2000) Oncol Rep 7:501

    PubMed  CAS  Google Scholar 

  9. Eriksson M, Norden B, Eriksson S (1988) Biochemistry 27:8144

    Article  PubMed  CAS  Google Scholar 

  10. Nonaka Y, Tsuboi M, Nakamoto KJ (1990) J Raman Spectrosc 21:133

    Article  CAS  Google Scholar 

  11. Feng ZM, Jiang JS Wang YH, Zhang PC (2005) Chem Pharm Bull (Tokyo) 53:1330

    Article  CAS  Google Scholar 

  12. Wang SX, Hua HM, Wu LJ, Li X, Zhu TR (1992) Yao Xue Xue Bao 27:743

    PubMed  CAS  Google Scholar 

  13. Abo KA, Adeyemi AA, Sobowale AO (2001) Afr J Med Med Sci 30:9

    PubMed  CAS  Google Scholar 

  14. Abo KA, Adeyemi AA (2002) Afr J Med Med Sci 31:171

    PubMed  CAS  Google Scholar 

  15. Laus G, Schottenberger H, Wurst K, Schutz J, Ongania KH, Horvath UEI, Schwarzler A (2003) Org Biomol Chem 1:1409

    Article  PubMed  CAS  Google Scholar 

  16. Bevilaqua T, da Silva DC, Machado VG (2004) Spectrochim Acta 60A:951

    CAS  Google Scholar 

  17. Blanco SE, Gasull EI, Ferretti FH (2003) Spectrochim Acta 59A:2985

    CAS  Google Scholar 

  18. Umadevi M, Suvitha A, Latha K, Rajkumar BJM, Ramakrishnan V (2007) Spectrochimica Acta 67A:910

  19. Sasireka V, Umadevi M, Ramakrishnan V (2008) Spectrochimica Acta A 69A:148

  20. Kerdesky FAJ, Ardecky RJ, Lakshmikantham MV, Cava MP (1981) J Am Chem Soc. 103:1992

    Article  CAS  Google Scholar 

  21. Parker CA, Rees WT (1960) Analyst 85:587

    Article  CAS  Google Scholar 

  22. Yoshida Z, Takabayash F (1967) Tetrahedron 24:933

    Article  CAS  Google Scholar 

  23. Marzocchi MP, Mantini AR, Casu M, Smulevich G (1998) J Chem Phys 108:534

    Article  CAS  Google Scholar 

  24. Marcus Y (1993) Chem Soc Rev 22:409

    Article  CAS  Google Scholar 

  25. Marrucci L, Paparo D, Vetrano MR, Colicchio M, Santamato E, Viscardi G (2002) J Chem Phys 108:10361

    Google Scholar 

  26. Palit DK, Pal H, Mukherjee T, Mittal JP (1990) J Chem Soc Faraday Trans 86:3861

    Article  CAS  Google Scholar 

  27. Calvert JG, Pitts Jr J (1966) N Photochemistry. Wiley, New York

    Google Scholar 

  28. Srividya N, Sinha A, Rao TAP (2000) J Solution Chem 29:847

    Article  CAS  Google Scholar 

  29. Inoue H, Hida M, Nakashlma N, Yoshlhara K (1982) J Phys Chem 86:3184

    Article  CAS  Google Scholar 

  30. Medhi RN, Barman R, Medhi KC, Jois SS (1998) Spectrochim Acta 54A:623

    CAS  Google Scholar 

  31. Kumar S, Rao VC, Rastogi RC (2001) Spectrochim Acta 57A:41

    CAS  Google Scholar 

  32. Prabhmirachi LS, Kutty DKN, Bhide AS (1983) Spectrochimica Acta 39A:663

    Google Scholar 

  33. Suppan P (1983) Chem Phys Lett 94:272

    Article  CAS  Google Scholar 

  34. Bakshiev NG (1962) Opt Spectrosc 13:507

    Google Scholar 

  35. Bakshiev NG (1964) Opt Spectrosc. 16:821

    Google Scholar 

  36. Chamma A, Viallet P, Hebdo CR (1970) Seances Acad Sci Ser France 270:1901

    CAS  Google Scholar 

  37. Nadaf YF, Mulimani BG, Gopal M, Inamdar SR (2004) J Mol Struct (Theochem) 678:177

    Article  CAS  Google Scholar 

  38. Chatterjee P, Laha AK, Bagchi S, Chem J (1992) Soc Faraday Trans I 88:1675

    Article  CAS  Google Scholar 

  39. Dimroth K, Reichardt C, Sieomann T, Bohlmann F (1963) Ann Chem 661:1

    CAS  Google Scholar 

  40. Roses M, Ortega J, Bosch E (1995) J Solution Chem 24:1

    Article  Google Scholar 

  41. Skwierczynski RD, Connors KA (1994) J Chem Soc Perkin Trans 2:467

    Google Scholar 

  42. Roses M, Rafols C, Ortega J, Bosch E (1995) J Chem Soc Perkin Trans 2:1607

    Google Scholar 

  43. Silva MAR, de Silva DC, Machado VG, Longhinotti E, Frescura VLA (2002) J Phys Chem 106A:8820

    Google Scholar 

  44. Abraham MH (1993) Chem Soc Rev 22:73

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The one of the authors (MU) is thankful to DST, Government of India for financial assistance under Women Scientist Scheme. The One of the authors (BJR) is thankful to DST, Government of India for financial assistance. The author (VR) is thankful to DST, Government of India for grants received to establish the laser laboratory. UGC, Government of India is acknowledged for recognizing laser spectroscopy group activities as among the thrust area of research under DRS and COSIST programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Umadevi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umadevi, M., Vanelle, P., Terme, T. et al. Spectral Investigations of Solvatochromism and Preferential Solvation on 1,4-Dihydroxy-2,3-Dimethyl-9,10-Anthraquinone. J Fluoresc 18, 1139–1149 (2008). https://doi.org/10.1007/s10895-008-0364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0364-8

Keywords

Navigation