Advertisement

Journal of Fluorescence

, Volume 18, Issue 6, pp 1139–1149 | Cite as

Spectral Investigations of Solvatochromism and Preferential Solvation on 1,4-Dihydroxy-2,3-Dimethyl-9,10-Anthraquinone

  • M. Umadevi
  • P. Vanelle
  • T. Terme
  • Beulah J.M. Rajkumar
  • V. Ramakrishnan
Original Paper

Abstract

Solvatochromic and preferential solvation of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone (DHDMAQ) have been investigated using optical absorption and fluorescence emission techniques. Optical absorption spectra of DHDMAQ in different solvents show the intra molecular charge transfer band in the region 400–550nm. The observed blue shift with solvent polarity indicates the delocalisation of the excited state, owing to reduction in quasiaromaticity of the chelate rings formed by intra molecular hydrogen bonds, due to electrostatic or hydrogen bonding interaction. This is also confirmed by the observed low oscillator strength and the transition dipole moment. The observed quantum yield of DHDMAQ in different solvents is due to the inter molecular hydrogen bond in the excited state in addition to the intra molecular hydrogen bond. It also reveals from the low oscillator strength, which indicates that the radiative decay is low. Excited state dipole moment of DHDMAQ is calculated by solvatochromic data and it shows a lower value than ground state dipole moment. The preferential solvation parameter shows that in dimethyl formamide (DMF) + ethanol mixture, the DHDMAQ is preferentially solvated by ethanol in DMF rich region and by DMF in ethanol rich region. In the case of DMF + dichloromethane mixture DHDMAQ is preferentially solvated by DMF.

Keywords

1,4-Dihydroxy-2,3-dimethyl-9,10-anthraquinone Optical absorption Fluorescence emission Preferential solvation Solvent effect Binary mixture 

Notes

Acknowledgements

The one of the authors (MU) is thankful to DST, Government of India for financial assistance under Women Scientist Scheme. The One of the authors (BJR) is thankful to DST, Government of India for financial assistance. The author (VR) is thankful to DST, Government of India for grants received to establish the laser laboratory. UGC, Government of India is acknowledged for recognizing laser spectroscopy group activities as among the thrust area of research under DRS and COSIST programs.

References

  1. 1.
    Reichardt C (1994) Chem Rev 94:2319CrossRefGoogle Scholar
  2. 2.
    Inamdar SR, Nadaf YF, Mulimani BG (2003) J Mol Struct (Theochem) 624:47CrossRefGoogle Scholar
  3. 3.
    O’Neil ML, Kruus P, Burk RC (1993) Can J Chem 71:1984Google Scholar
  4. 4.
    Kamlet KJ, Abbound JKM, Abraham MH, Taft RW (1983) J Org Chem 48:2877CrossRefGoogle Scholar
  5. 5.
    Toselli NM, Silber JJ, Anunziata JD (1988) Spectrochim Acta 44A:829Google Scholar
  6. 6.
    Linert W, Strauss B, Herlinger E, Reichardt C (1992) J Phys Org Chem 5:275CrossRefGoogle Scholar
  7. 7.
    Catalan J (1995) J Org Chem 60:8315CrossRefGoogle Scholar
  8. 8.
    Tanaka T, Kohno H, Murakami M, Shimada R, Kagami S (2000) Oncol Rep 7:501PubMedGoogle Scholar
  9. 9.
    Eriksson M, Norden B, Eriksson S (1988) Biochemistry 27:8144PubMedCrossRefGoogle Scholar
  10. 10.
    Nonaka Y, Tsuboi M, Nakamoto KJ (1990) J Raman Spectrosc 21:133CrossRefGoogle Scholar
  11. 11.
    Feng ZM, Jiang JS Wang YH, Zhang PC (2005) Chem Pharm Bull (Tokyo) 53:1330CrossRefGoogle Scholar
  12. 12.
    Wang SX, Hua HM, Wu LJ, Li X, Zhu TR (1992) Yao Xue Xue Bao 27:743PubMedGoogle Scholar
  13. 13.
    Abo KA, Adeyemi AA, Sobowale AO (2001) Afr J Med Med Sci 30:9PubMedGoogle Scholar
  14. 14.
    Abo KA, Adeyemi AA (2002) Afr J Med Med Sci 31:171PubMedGoogle Scholar
  15. 15.
    Laus G, Schottenberger H, Wurst K, Schutz J, Ongania KH, Horvath UEI, Schwarzler A (2003) Org Biomol Chem 1:1409PubMedCrossRefGoogle Scholar
  16. 16.
    Bevilaqua T, da Silva DC, Machado VG (2004) Spectrochim Acta 60A:951Google Scholar
  17. 17.
    Blanco SE, Gasull EI, Ferretti FH (2003) Spectrochim Acta 59A:2985Google Scholar
  18. 18.
    Umadevi M, Suvitha A, Latha K, Rajkumar BJM, Ramakrishnan V (2007) Spectrochimica Acta 67A:910Google Scholar
  19. 19.
    Sasireka V, Umadevi M, Ramakrishnan V (2008) Spectrochimica Acta A 69A:148Google Scholar
  20. 20.
    Kerdesky FAJ, Ardecky RJ, Lakshmikantham MV, Cava MP (1981) J Am Chem Soc. 103:1992CrossRefGoogle Scholar
  21. 21.
    Parker CA, Rees WT (1960) Analyst 85:587CrossRefGoogle Scholar
  22. 22.
    Yoshida Z, Takabayash F (1967) Tetrahedron 24:933CrossRefGoogle Scholar
  23. 23.
    Marzocchi MP, Mantini AR, Casu M, Smulevich G (1998) J Chem Phys 108:534CrossRefGoogle Scholar
  24. 24.
    Marcus Y (1993) Chem Soc Rev 22:409CrossRefGoogle Scholar
  25. 25.
    Marrucci L, Paparo D, Vetrano MR, Colicchio M, Santamato E, Viscardi G (2002) J Chem Phys 108:10361Google Scholar
  26. 26.
    Palit DK, Pal H, Mukherjee T, Mittal JP (1990) J Chem Soc Faraday Trans 86:3861CrossRefGoogle Scholar
  27. 27.
    Calvert JG, Pitts Jr J (1966) N Photochemistry. Wiley, New YorkGoogle Scholar
  28. 28.
    Srividya N, Sinha A, Rao TAP (2000) J Solution Chem 29:847CrossRefGoogle Scholar
  29. 29.
    Inoue H, Hida M, Nakashlma N, Yoshlhara K (1982) J Phys Chem 86:3184CrossRefGoogle Scholar
  30. 30.
    Medhi RN, Barman R, Medhi KC, Jois SS (1998) Spectrochim Acta 54A:623Google Scholar
  31. 31.
    Kumar S, Rao VC, Rastogi RC (2001) Spectrochim Acta 57A:41Google Scholar
  32. 32.
    Prabhmirachi LS, Kutty DKN, Bhide AS (1983) Spectrochimica Acta 39A:663Google Scholar
  33. 33.
    Suppan P (1983) Chem Phys Lett 94:272CrossRefGoogle Scholar
  34. 34.
    Bakshiev NG (1962) Opt Spectrosc 13:507Google Scholar
  35. 35.
    Bakshiev NG (1964) Opt Spectrosc. 16:821Google Scholar
  36. 36.
    Chamma A, Viallet P, Hebdo CR (1970) Seances Acad Sci Ser France 270:1901Google Scholar
  37. 37.
    Nadaf YF, Mulimani BG, Gopal M, Inamdar SR (2004) J Mol Struct (Theochem) 678:177CrossRefGoogle Scholar
  38. 38.
    Chatterjee P, Laha AK, Bagchi S, Chem J (1992) Soc Faraday Trans I 88:1675CrossRefGoogle Scholar
  39. 39.
    Dimroth K, Reichardt C, Sieomann T, Bohlmann F (1963) Ann Chem 661:1Google Scholar
  40. 40.
    Roses M, Ortega J, Bosch E (1995) J Solution Chem 24:1CrossRefGoogle Scholar
  41. 41.
    Skwierczynski RD, Connors KA (1994) J Chem Soc Perkin Trans 2:467Google Scholar
  42. 42.
    Roses M, Rafols C, Ortega J, Bosch E (1995) J Chem Soc Perkin Trans 2:1607Google Scholar
  43. 43.
    Silva MAR, de Silva DC, Machado VG, Longhinotti E, Frescura VLA (2002) J Phys Chem 106A:8820Google Scholar
  44. 44.
    Abraham MH (1993) Chem Soc Rev 22:73CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Umadevi
    • 1
  • P. Vanelle
    • 2
  • T. Terme
    • 2
  • Beulah J.M. Rajkumar
    • 3
  • V. Ramakrishnan
    • 4
  1. 1.Department of PhysicsMother Teresa Women’s UniversityTamil NaduIndia
  2. 2.Department of Radical Pharmaco-Chemistry, UMR CNRS 6264, Faculty of PharmacyUniversity of MéditerranéeMarseille Cedex 5France
  3. 3.Department of PhysicsLady Doak CollegeMaduraiIndia
  4. 4.Department of Laser Studies, School of PhysicsMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations