Advertisement

Journal of Fluorescence

, Volume 18, Issue 3–4, pp 661–670 | Cite as

Characterization of Interaction Between Bergenin and Human Serum Albumin in Membrane Mimetic Environments

  • Yaheng Zhang
  • Lijun Dong
  • Ying Li
  • Jiazhong Li
  • Xingguo Chen
Original Paper

Abstract

The interaction between bergenin and human serum albumin (HSA) in AOT/isooctane/water microemulsions was studied by fluorescence quenching technique in combination with UV absorption spectroscopy, circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) technique. Fluorescence data in ω o 20 microemulsions revealed the presence of a binding site of bergenin on HSA and its binding constants (K) were 1.64 × 104, 1.44 × 104, 1.26 × 104 and 1.09 × 104 M−1 at 289, 296, 303, and 310 K, respectively. The binding of bergenin with HSA in microemulsions was stronger than that in buffer solution. The alterations of protein secondary structure in the microemulsions in the absence and presence of bergenin compared with the free form of HSA in buffer were qualitatively and quantitatively analyzed by the evidence from CD spectra. Enthalpy and entropy changes for the reaction were calculated to be −14.45 kJ mol−1 and 30.76 J mol−1 K−1. These results indicated that bergenin bound to HSA mainly by a hydrophobic interaction in microemulsions which was in agreement with the result of the molecular modeling study. The DLS data suggested that HSA may locate at the interface of the microemulsion and bergenin could interact with them.

Keywords

Microemulsion Bergenin Human serum albumin Spectrum Binding 

References

  1. 1.
    Burnett GR, Rees GD, Steytler DC, Robinson BH (2004) Fluorescence correlation spectroscopy of water-in-oil microemulsions: an application in specific characterisation of droplets containing biomolecules. Colloids Surf A Physicochem Eng Asp 250:171–178CrossRefGoogle Scholar
  2. 2.
    Andrade SM, Costa SMB, Pansu R (2000) The influence of water on the photophysical and photochemical properties of Piroxicam in AOT/iso-octane/water reversed micelles. Photochem Photobiol 71:405–412PubMedCrossRefGoogle Scholar
  3. 3.
    Pileni MP (1993) Reverse micelles as microreactors. J Phys Chem 97:6961–6973CrossRefGoogle Scholar
  4. 4.
    Correa NM, Zorzan DH, D’Anteo L, Lasta E, Chiarini M, Cerichelli G (2004) Reverse micellar aggregates: Effect on ketone reduction. 2. Surfactant role. J Org Chem 69:8231–8238PubMedCrossRefGoogle Scholar
  5. 5.
    Pal T, De S, Jana NR, Pradhan N, Mandal R, Pal A, Beezer AE, Mitchell JC (1998) Organized media as redox catalysts. Langmuir 14:4724–4730CrossRefGoogle Scholar
  6. 6.
    Falcone RD, Biasutti MA, Correa NM, Silber JJ, Lissi E, Abuin E (2004) Effect of the addition of a nonaqueous polar solvent (glycerol) on enzymatic catalysis in reverse micelles, hydrolysis of 2-naphthyl acetate by a-chymotrypsin. Langmuir 20:5732–5737PubMedCrossRefGoogle Scholar
  7. 7.
    Durfor CN, Bolin RJ, Sugasawara RJ, Massey RJ, Jacobs JW, Schultz PG (1988) Antibody catalysis in reverse micelles. J Am Chem Soc 110:8713–8714CrossRefGoogle Scholar
  8. 8.
    Regalado C, Asenjo JA, Pyle DL (1996) Studies on the purification of peroxidase from horseradish roots using reverse micelles. Enzyme Microb Technol 18:332–339PubMedCrossRefGoogle Scholar
  9. 9.
    Sadler PJ, Viles JH (1996) 1H and 113Cd NMR investigations of Cd2+ and Zn2+ binding sites on serum albumin: Competition with Ca2+, Ni2+, Cu2+, and Zn2+. Inorg Chem 35:4490–4496PubMedCrossRefGoogle Scholar
  10. 10.
    Tang JH, Qi SD, Chen XG (2005) Spectroscopic studies of the interaction of anti-coagulant rodenticide diphacinone with human serum albumin. J Mol Struct 779:87–95CrossRefGoogle Scholar
  11. 11.
    Kragh-Hansen U, Chuang VTG, Otagiri M (2002) Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull 25:695–704PubMedCrossRefGoogle Scholar
  12. 12.
    Lin JH, Cocchetto DM, Duggan DE (1987) Protein binding as a primary determinant of the clinical pharmacokinetic properties of non-steroidal antiinflammatory drugs. Clin Pharmacokinet 12:402–432PubMedCrossRefGoogle Scholar
  13. 13.
    Fichtl B, Nieciecki A, Walter K (1991) Tissue binding versus plasma binding of drugs: general principles and pharmacokinetic consequences. Adv Drug Res 20:117–166Google Scholar
  14. 14.
    Pu HL, Huang X, Zhao JH, Hong A (2002) Bergenin is the antiarrhythmic principle of Fluggea virosa. Planta Med 4:372–374CrossRefGoogle Scholar
  15. 15.
    Kim HS, Lim HK, Chung MW, Kim YC (2000) Antihepatotoxic activity of bergenin, the major constituent of Mallotus japonicus, on carbon tetrachloride-intoxicated hepatocytes. J Ethnopharmacol 1:79–83CrossRefGoogle Scholar
  16. 16.
    Li RW, Leach DN, Myers SP, Lin GD, Leach GJ, Waterman PGA (2004) New anti-inflammatory glucoside from Ficus racemosa L. Planta Med 5:421–426Google Scholar
  17. 17.
    Mishima S, Matsumoto K, Futamura Y, Araki Y, Ito T, Tanaka T, Iiluma M, Nozawa Y, Akao Y (2003) Antitumor effect of stilbenoids from Vateria indica against allografted sarcoma S-180 in animal model. J Exp Ther Oncol 5:283–288CrossRefGoogle Scholar
  18. 18.
    Piacente S, Pizza C, De Tommasi N, Mahmood N (1996) Constituents of Ardisia japonica and their in vitro anti-HIV activity. J Nat Prod 6:565–569CrossRefGoogle Scholar
  19. 19.
    Takahashi H, Kosaha M, Watanabe Y, Nakade K, Fukuyama Y (2003) Synthesis and neuroprotective activity of bergenin derivatives with antioxidant activity. Bioorg Med Chem 8:1781–1788CrossRefGoogle Scholar
  20. 20.
    Abe K, Sakai K, Uchida M (1980) Effects of bergenin on experimental ulcers-prevention of stress induced ulcers in rats. Gen Pharmacol Vasc Syst 4:361–368CrossRefGoogle Scholar
  21. 21.
    Xie JX, Wang L, Liu CX, Zhang DY (1981) The identification and total synthesis of aichasu, an antitussive agent. Acta Pharmacol Sin 16:425–428Google Scholar
  22. 22.
    Zhong L, Zhang YY, Liu H, Yuan JL, Zheng ZL, Zou GL (2007) Transport of a cancer chemopreventive polyphenol, resveratrol: interaction with serum albumin and hemoglobin. J Fluoresc 17:580–587CrossRefGoogle Scholar
  23. 23.
    Li Y, Yao XJ, Jin J, Chen XG, Hu ZD (2007) Interaction of rhein with human serum albumin investigation by optical spectroscopic technique and modeling studies. Biochim Biophys Acta 1774:51–58PubMedGoogle Scholar
  24. 24.
    He WY, Li Y, Xue CX, Hu ZD, Chen XG, Sheng FL (2005) Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorg Med Chem 13:1837–1845PubMedCrossRefGoogle Scholar
  25. 25.
    Karnaukhova E (2007) Interactions of human serum albumin with retinoic acid, retinal and retinyl acetate. Biochem Pharmacol 73:901–910PubMedCrossRefGoogle Scholar
  26. 26.
    Desfosses B, Cittanova N, Urbach W, Waks M (1991) Ligand binding at membrane mimetic interfaces human serum albumin in reverse micelles. Eur J Biochem 199:79–87PubMedCrossRefGoogle Scholar
  27. 27.
    Davis DM, McLoskey D, Birch DJS, Gellert PR, Kittlety RS, Swart RM (1996) The fluorescence and circular dichroism of proteins in reverse micelles: application to the photophysics of human serum albumin and N-acetyl-L-tryptophanamide. Biophys Chem 60:63–77PubMedCrossRefGoogle Scholar
  28. 28.
    Andrade SM, Costa SMB (2006) Spectroscopic studies of water-soluble porphyrins with protein encapsulated in bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles: aggregation versus complexation. Chem–Eur J 12:1046–1057Google Scholar
  29. 29.
    Scatchard G (1949) The attractions of protein for small molecules and ions. Ann N Y Acad Sci 51:660–673CrossRefGoogle Scholar
  30. 30.
    Xu Y, Huang HG, Shen HX (1998) Fluorescence quenching behavior of human serum albumin by quinolone antibacterials. Chin J Anal Chem 26:1494–1497Google Scholar
  31. 31.
    Lu ZX, Cui T, Shi QL (1987) Applications of circular dichroism and optical rotatory dispersion in molecular biology, 1st edn. Science Press, BeijingGoogle Scholar
  32. 32.
    Petitpas I, Bhattacharya AA, Twine S, East M, Curry S (2001) Crystal structure analysis of warfarin binding to human serum albumin. J Biol Chem 276:22804–22809PubMedCrossRefGoogle Scholar
  33. 33.
    Morris G (2002) SYBYL Software, Version 6.9. Tripos Associates, St. LouisGoogle Scholar
  34. 34.
    Andrade S, Kamenskaya EO, Levashov AV, Moura JJG (1997) Encapsulation of flavodoxin in reverse micelles. Biochem Biophys Res Commun 234:651–654PubMedCrossRefGoogle Scholar
  35. 35.
    Bermejo R, Tobaruela DJ, Talavera EM, Orte A, Alvarez-Pez JM (2003) Fluorescent behavior of B-phycoerythrin in microemulsions of aerosol OT/water/isooctane. J Colloid Interface Sci 263:616–624PubMedCrossRefGoogle Scholar
  36. 36.
    Miller JN (1979) Recent advances in molecular luminescence analysis. Proc Anal Div Chem Soc 16:203–208Google Scholar
  37. 37.
    Jiang CQ, Gao MX, Meng XZ (2003) Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples. Spectrochim Acta Part A: Mol Biomol Spectrosc 59:1605–1610CrossRefGoogle Scholar
  38. 38.
    Li Y, He WY, Tian JN, Tang JH, Hu ZD, Chen XG (2005) The effect of Berberine on the secondary structure of human serum albumin. J Mol Struct 743:79–84CrossRefGoogle Scholar
  39. 39.
    Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding site on human serum albumin. Mol Pharmacol 12:1052–1061PubMedGoogle Scholar
  40. 40.
    Peters T (1996) All about albumin, biochemistry, genetics and medical application. Academic Press, San DiegoGoogle Scholar
  41. 41.
    Melo EP, Fojan P, Cabral JMS, Petersen SB (2000) Dynamic light scattering of cutinase in AOT reverse micelles. Chem Phys Lipids 106:181–189PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yaheng Zhang
    • 2
  • Lijun Dong
    • 2
  • Ying Li
    • 2
  • Jiazhong Li
    • 2
  • Xingguo Chen
    • 1
    • 2
  1. 1.State Key Laboratory of Applied Organic ChemistryLanzhou UniversityLanzhouChina
  2. 2.Department of ChemistryLanzhou UniversityLanzhouChina

Personalised recommendations