Journal of Fluorescence

, Volume 18, Issue 5, pp 943–952 | Cite as

Rotational Diffusion of Coumarins in Alcohols: A Dielectric Friction Study

  • B.R. Gayathri
  • J.R. Mannekutla
  • S.R. Inamdar
Original Paper


The rotational dynamics of three structurally similar polar molecules viz., coumarin 440, coumarin 151 and coumarin 450 has been studied in alcohols at room temperature using steady-state fluorescence depolarization method and time correlated single photon counting technique. The observed reorientation times of all the three probes are found to be longer than those predicted by Stokes–Einstein–Debye (SED) hydrodynamic theory with stick boundary condition and a deviation towards super-stick behavior is noted. Dielectric friction theories of Nee–Zwanzig and van der Zwan–Hynes, which treat the solute as a point dipole, overestimate the dielectric friction contribution exhibited by all the three coumarins in alcohols. Results are discussed in the light of theoretical models and the possibility of hydrogen bonding between the amino group of the probe molecules and the hydroxyl group of the alcohols.


Rotational dynamics Hydrogen bonding Dielectric friction Super-stick Dipole moment 



The authors are grateful to Dr. P.K. Gupta, RRCAT, Indore, for providing TCSPC facility. The funding in the form of a Major Research Project by the University Grants Commission (UGC), New Delhi, is gratefully acknowledged. One of the authors (BRG) is thankful to UGC for a fellowship under Faculty Improvement Program and to the management of JSS. College, Dharwad for the support and encouragement. JRM thanks CSIR, New Delhi, for a Senior Research Fellowship under a Major Research Project.


  1. 1.
    Kivelson D, Spears KG (1985) Dielectric friction as a source of rotational drag on charged noncentrosymmetric molecules. J Phys Chem 89:1999–2001CrossRefGoogle Scholar
  2. 2.
    Philips LA, Webb SP, Clark JH (1985) High Pressure studies of rotational dynamics: the role of dielectric friction. J Chem Phys 83:5810–5821CrossRefGoogle Scholar
  3. 3.
    Gudgin EF, Templeton, Kenney-Wallace GA (1986) Picosecond laser spectroscopic study of orientational dynamics of probe molecules in dimethylsulfoxide-water system. J Phys Chem 90:2896–2900CrossRefGoogle Scholar
  4. 4.
    Gudgin Templeton EF, Kenney-Wallace GA (1986) Correlation between molecular reorientation dynamics of ionic probes in polar fluids and dielectric friction by picosecond modulation spectroscopy. J Phys Chem 90:5441–5448CrossRefGoogle Scholar
  5. 5.
    Kenney-Wallace GA, Paone S, Kalpouzos C (1988) Femtosecond laser spectroscopy and dynamics of solvation in liquids and electrolytes, Faraday Discussion. Chem Soc 85:185–198Google Scholar
  6. 6.
    Simon JD, Thompson PA (1990) Spectroscopy and rotational dynamics of oxazine 725 in alcohols: a test of dielectric friction theories. J Chem Phys 92:2891–2896CrossRefGoogle Scholar
  7. 7.
    Dutt GB, Doraiswamy S (1992) Picosecond reorientational dynamics of polar dye probes in binary aqueous mixtures. J Chem Phys 96:2475–2491CrossRefGoogle Scholar
  8. 8.
    Dutt GB, Raman S (2001) Rotational dynamics of coumains: an experimental test of dielectric friction theories. J Chem Phys 114:6702–6712CrossRefGoogle Scholar
  9. 9.
    Hartman RS, Waldeck DH (1994) A test of dielectric models: rotational diffusion of fluorenes in dimethylsulphoxide. J Phys Chem 98:1386–1393CrossRefGoogle Scholar
  10. 10.
    Hubbard JB, Onsager L (1977) Dielectric dispersion and dielectric friction in electrolyte solutions. J Chem Phys 67:4850–4857CrossRefGoogle Scholar
  11. 11.
    Hubbard JB (1978) Friction on a rotating dipole. J Chem Phys 69:1007–1009CrossRefGoogle Scholar
  12. 12.
    Felderhof BU (1983) Dielectric friction on a polar molecule rotating in a fluid. Mol Phys 48:1269–1281CrossRefGoogle Scholar
  13. 13.
    Felderhof BU (1983) Dielectric friction on an ion rotating in a fluid. Mol Phys 48:1283–1288CrossRefGoogle Scholar
  14. 14.
    Kumar PV, Maroncelli M (2000) The non-separability of “dielectric” and “mechanical” friction in molecular systems: a simulation study. J Chem Phys 112:5370–5381CrossRefGoogle Scholar
  15. 15.
    Dutt GB, Ramakrishna G (2000) Temperature-dependent rotational relaxation of nonpolar probes in mono and diols: Size effects versus hydrogen bonding. J Chem Phys 112:4676–4682CrossRefGoogle Scholar
  16. 16.
    Fleming GR (1986) Chemical applications of ultra fast spectroscopy. Oxford University Press, LondonGoogle Scholar
  17. 17.
    Spears KG, Steinmetz KM (1985) Solvent interactions with anions by reorientation studies of resorufin. J Phys Chem 89:3623–3629CrossRefGoogle Scholar
  18. 18.
    Moog RS, Bankert DL, Maroncelli M (1993) Rotational diffusion of coumarin 102 in trifluoroethanol: the case for solvent attachment. J Phys Chem 97:1496–1501CrossRefGoogle Scholar
  19. 19.
    Dutt GB, Srivastavoy VJP, Sapre AV (1999) Rotational dynamics of pyrrolopyrrole derivatives in alcohols: does solute-solvent hydrogen bonding really hinder molecular rotation? J Chem Phys 110:9623–9629CrossRefGoogle Scholar
  20. 20.
    Dutt GB, Srivastavoy VJP, Sapre AV (1999) Rotational dynamics of pyrrolopyrrole derivatives in glycerol: a comparative study with alcohols. J Chem Phys 111:9705–9710CrossRefGoogle Scholar
  21. 21.
    Dutt GB (2000) Rotational dynamics of non-dipolar probes in alkane–alkanol mixtures: microscopic friction on hydrogen bonding and non-hydrogen bonding solute molecules. J Chem Phys 113:11154–11158CrossRefGoogle Scholar
  22. 22.
    Lackowicz JR (1983) Principles of fluorescence spectroscopy. Plenum, New YorkGoogle Scholar
  23. 23.
    Das K, Jain B, Dube A, Gupta PK (2005) pH dependant binding of chlorine-p6 with phosphatidyl choline liposomes. Chem Phys Lett 401:185–188CrossRefGoogle Scholar
  24. 24.
    Debye P (1929) Polar Molecules. Dover, LondonGoogle Scholar
  25. 25.
    Kievelson D (1987) Rotational dynamics of small and macro molecules. Springer, BerlinGoogle Scholar
  26. 26.
    Perrin F (1934) Mouvement Brownien d’un ellipsoide (I). Dispersion diélectrique pour des molécules ellipsoidales.. J Phys Radium 5:497–512CrossRefGoogle Scholar
  27. 27.
    Hu CM, Zwanzig R (1974) Rotational friction coefficients for spheroids with the slipping boundary condition. J Chem Phys 60:4354–4357CrossRefGoogle Scholar
  28. 28.
    Edward JT (1970) Molecular volumes and the Stokes–Einstein equation. J Chem Educ 47:261–270CrossRefGoogle Scholar
  29. 29.
    Dutt GB, Sachdeva A (2003) Temperature-dependent rotational relaxation in a viscous alkane: Interplay of shape factor and boundary condition on molecular rotation. J Chem Phys 118:8307–8314CrossRefGoogle Scholar
  30. 30.
    Ben-Amotz, Drake D (1988) The solute size effect in rotational diffusion experiments: a test of microscopic friction theories. J Chem Phys 89:1019–1029CrossRefGoogle Scholar
  31. 31.
    Williams AM, Jiang Y, Ben-Amotz D (1994) Molecular reorientation dynamics and microscopic friction in liquids. Chem Phys 180:119–129CrossRefGoogle Scholar
  32. 32.
    Alavi DS, Hartman RS, Waldeck DH (1991) A test of continuum models for dielectric friction: Rotational diffusion of phenoxazine dyes in dimethylsulphoxide. J Chem Phys 94:4509–4520CrossRefGoogle Scholar
  33. 33.
    Alavi DS, Hartman RS, Waldeck DH (1991) The influence of wave vector dependent dielectric properties on rotational friction: Rotational diffusion of phenoxazine dyes. J Chem Phys 95:6770–6783CrossRefGoogle Scholar
  34. 34.
    Hartman RS, Alavi DS, Waldeck DH (1991) An experimental test of dielectric friction models using the rotational diffusion of aminoanthraquinones. J Phys Chem 95:7872–7880CrossRefGoogle Scholar
  35. 35.
    Alavi DS, Waldeck DH (1991) A test of hydrodynamics in binary solvent systems: rotational diffusion studies of oxazine 118. J Phys Chem 95:4848–4852CrossRefGoogle Scholar
  36. 36.
    Hartman RS, Konitsky WM, Waldeck DH, Chang YJ, Castner EW (1997) Probing solute-solvent electrostatic interactions: rotational diffusion studies of 9,10-disubstituted anthracenes. J Chem Phys 106:7920–7930CrossRefGoogle Scholar
  37. 37.
    Nee TW, Zwanzig R (1970) Theory of dielectric relaxation in polar liquids. J Chem Phys 52:6353–6363CrossRefGoogle Scholar
  38. 38.
    van der Zwan G, Hynes JT (1985) Time-dependent fluorescence solvent shifts, dielectric friction and nonequilibrium solvation in polar solvents. J Phys Chem 89:4181–4188CrossRefGoogle Scholar
  39. 39.
    Nadaf YF, Mulimani BG, Gopal M, Inamdar SR (2004) Ground and excited state dipole moments of some exalite UV laser dyes from solvatochromic method using solvent polarity parameters. J Mol Struct 678:177–181Google Scholar
  40. 40.
    Hartman RD, Waldeck DH (1991) An experimental test of dielectric friction models using the rotational diffusion of aminoanthraquinones. J Phys Chem 95:7872–7880CrossRefGoogle Scholar
  41. 41.
    Imeshev G, Khundkar LR (1995) Homogeneous rotational dynamics of a rod like probe in 1-propanol. J Chem Phys 103:8322–8328CrossRefGoogle Scholar
  42. 42.
    Garg SK, Smyth CP (1965) Microwave absorption and molecular structure in liquids. The three dielectric dispersion regions of the normal primary alcohols.. J Phys Chem 69:1294–1301CrossRefGoogle Scholar
  43. 43.
    Denny DJ, Cole RH (1955) Dielectric properties of methanol and methanol-1-propanol solutions. J Chem Phys 23:1767–1772CrossRefGoogle Scholar
  44. 44.
    Brot C, Magat M (1963) Comment on “dispersion at millimetre wavelengths in methyl and ethyl alcohols. J Chem Phys 39:841–842CrossRefGoogle Scholar
  45. 45.
    Wiemers K, Kauffman JF (2000) Dielectric friction and rotational diffusion of hydrogen bonding solutes. J Phys Chem 104:451–457Google Scholar
  46. 46.
    Ben-Amotz D, Drake JM (1988) The solute size effect in rotational diffusion experiments: a test of microscopic friction theories. J Chem Phys 89:1019–1029CrossRefGoogle Scholar
  47. 47.
    Roy M, Doraiswamy S (1993) Rotational dynamics of nonpolar solutes in different solvents: comparative evaluation of the hydrodynamic and quasihydrodynamic models. J Chem Phys 98:3213–3224CrossRefGoogle Scholar
  48. 48.
    Dutt GB, Ghanty TK (2003) Rotational dynamics of nonpolar probes in ethanols: how does the strength of solute-solvent hydrogen bond impede molecular rotation? J Chem Phys 119:4768–4774CrossRefGoogle Scholar
  49. 49.
    Horng ML, Gardecki JA, Maroncelli M (1997) Rotational dynamics of coumarin 153: time-dependent friction, dielectric friction, and other nonhydrodynamic effects. J Phys Chem A 101:1030–1047CrossRefGoogle Scholar
  50. 50.
    McCarthy PK, Blanchard GJ (1993) AM1 study of the electronic structure of coumarins. J Phys Chem 97:12205–12209CrossRefGoogle Scholar
  51. 51.
    Tamashiro A, Rodriguez J, Laria D (2001) Equillibrium and dynamical aspects of solvation of coumarin-151 in polar nanoclusters. J Phy Chem 106:215–221Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PhysicsJSS CollegeDharwadIndia
  2. 2.Laser Spectroscopy Programme, Department of PhysicsKarnatak UniversityDharwadIndia

Personalised recommendations