Advertisement

Journal of Fluorescence

, Volume 18, Issue 5, pp 919–924 | Cite as

Highly Selective and Anions Controlled Fluorescent Sensor for Hg2+ in Aqueous Environment

  • Jianjun Du
  • Jiangli Fan
  • Xiaojun Peng
  • Honglin Li
  • Jingyun Wang
  • Shiguo Sun
Original Paper

Abstract

A highly selective PET fluorescent sensor B1 for Hg2+ containing a BODIPY fluorophore and a NS2O2 penta-chelating receptor has been synthesized and characterized. Its absorption maximum wavelength (498 nm) and emission maximum wavelength (512 nm) are both in the visible range. The fluorescence quantum yields of the B1 and Hg2+-bound states of BHg1 are 0.008 and 0.58 in 70% aqueous ethanol solution, respectively. The pKa of 1.97 is the lowest in metal ions PET chemo sensors reported up till now as we know. Thus, B1 can detect the Hg2+ in a wide pH span, which indicates that it has more potential and further practical applications for biology and toxicology. Furthermore, BHg1 also displays response to some anions such as Cl(Br), \(CO_3^{2 - } \), SCN and CH3COO, which is attributed to the significant coordinating ability of these anions to Hg2+.

Keywords

Mercury Sensor Fluorescence Anions 

Notes

Acknowledgements

This work was supported by the National Science Foundation of China (20376010 and 20472012,).

References

  1. 1.
    Magos L (1997) Metal ions in biological systems (mercury and its effects on environment and biology). Physiol Toxicol Mercury 34:321–370Google Scholar
  2. 2.
    Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17(2):146–160CrossRefGoogle Scholar
  3. 3.
    Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18(3):149–175PubMedCrossRefGoogle Scholar
  4. 4.
    Renzoni A, Zino F, Franchi E (1998) Mercury levels along the food chain and risk for exposed populations. Environ Res 77(2):68–72PubMedCrossRefGoogle Scholar
  5. 5.
    Mercury Update: Impact on Fish Advisories. EPA Fact Sheet EPA-823-F-01-011; (2001), EPA, Office of Water: Washington, DCGoogle Scholar
  6. 6.
    von Burg R, Greenwood MR (1991) In: Merian E (ed) Metals and their compounds in the environment. VCH, Weinheim, pp 1045–1088Google Scholar
  7. 7.
    Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40(12):1335–1351PubMedCrossRefGoogle Scholar
  8. 8.
    Harris HH, Pickering I, George GN (2003) Brevia: the chemical form of mercury in fish. Science (Wash. D.C.) 301(5637):1203CrossRefGoogle Scholar
  9. 9.
    Richardson SD, Temes TA (2005) Water analysis: emerging contaminants and current issues. Anal Chem 77(12):3807–3838PubMedCrossRefGoogle Scholar
  10. 10.
    Von Burg R (1995) Inorganic mercury-toxicology update. J Appl Toxicol 15(6):483–493CrossRefGoogle Scholar
  11. 11.
    Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med 349(18):1731–1737PubMedCrossRefGoogle Scholar
  12. 12.
    Welz B, Sperling M (1999) Atomic absorption spectrometry, 3rd ed. Weinheim, Germany, WileyGoogle Scholar
  13. 13.
    Moreton JA, Delves HT (1998) Simple direct method for the determination of total mercury levels in blood and urine and nitric acid digests of fish by inductively coupled plasma mass spectrometry. J Anal At Spectrom 13(7):659–665CrossRefGoogle Scholar
  14. 14.
    Lloris JM, Martinez-Manez R, Padilla-Tosta ME, Pardo T, Soto J, Beer PD, Cadman L, Smith DK (1999) Cyclic and open-chain aza-oxa ferrocene-functionalised derivatives as receptors for the selective electrochemical sensing of toxic heavy metal ions in aqueous environments. J Chem Soc Dalton Trans 14:2359–2370CrossRefGoogle Scholar
  15. 15.
    Jimenez D, Martinez-Manez R, Sancenon F, Soto J (2004) Fluorescent sensor for redox environment: a redox controlled molecular device based on the reversible mercury mediated folded structure formation of oligothymidylate. Tetrahedron Lett 45(6):1257–1259CrossRefGoogle Scholar
  16. 16.
    Youn NJ, Chang S-K (2005) Dimethylcyclam based fluoroionophore having Hg2 +- and Cd2 +-selective signaling behaviors. Tetrahedron Lett 46(1):125–129CrossRefGoogle Scholar
  17. 17.
    Moon S-Y, Youn NJ, Park SM, Chang S-K (2005) Diametrically disubstituted cyclam derivative having Hg2+-selective fluoroionophoric behaviors. J Org Chem 70(6):2394–2397PubMedCrossRefGoogle Scholar
  18. 18.
    Miyake Y, Ono A (2005) Fluorescent sensor for redox environment: a redox controlled molecular device based on the reversible mercury mediated folded structure formation of oligothymidylate. Tetrahedron Lett 46(14):2441–2443CrossRefGoogle Scholar
  19. 19.
    Sancenon F, Martinez-Manez R, Soto J (2001) 1,3,5-Triarylpent-2-en-1,5-diones for the colorimetric sensing of the mercuric cation. Chem Commun 21:2262–2263CrossRefGoogle Scholar
  20. 20.
    Choi MJ, Kim MY, Chang S-K A new Hg2+-selective chromoionophore based on calix[4]arenediazacrown ether. Chem Commun 17:1664–1665Google Scholar
  21. 21.
    Guo X, Qian X, Jia L (2004) A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. J Am Chem Soc 126(8):2272–2273PubMedCrossRefGoogle Scholar
  22. 22.
    Yoon S, Albers AE, Wong AP, Chang CJ (2005) Screening mercury levels in fish with a selective fluorescent chemosensor. J Am Chem Soc 127(46):16030–16031PubMedCrossRefGoogle Scholar
  23. 23.
    Zheng H, Qian Z-H, Xu L, Yuan F-F, Lan L-D, Xu J-G (2006) Switching the recognition preference of Rhodamine B Spirolactam by replacing one atom: design of Rhodamine B Thiohydrazide for recognition of Hg(II) in aqueous solution. Org Lett 8(5):859–861PubMedCrossRefGoogle Scholar
  24. 24.
    Ko S-K, Yang Y-K, Tae J, Shin I (2006) In vivo monitoring of mercury ions using a Rhodamine-based molecular probe. J Am Chem Soc 128(43):14150–14155PubMedCrossRefGoogle Scholar
  25. 25.
    Nolan EM, Lippard SJ (2003) A “Turn-On” fluorescent sensor for the selective detection of mercuric ion in aqueous media. J Am Chem Soc 125(47):14270–14271PubMedCrossRefGoogle Scholar
  26. 26.
    Nolan EM, Racine ME, Lippard SJ (2006) Selective Hg(II) detection in aqueous solution with Thiol derivatized fluoresceins. Inorg Chem 45(6):2742–2749PubMedCrossRefGoogle Scholar
  27. 27.
    Nolan EM, Lippard SJ (2007) Turn-on and ratiometric mercury sensing in water with a red-emitting probe. J Am Chem Soc 129(18):5910–5918PubMedCrossRefGoogle Scholar
  28. 28.
    Nolan EM, Jaworski J, Okamoto K-I, Hayashi Y, Sheng M, Lippard SJ (2005) QZ1 and QZ2: rapid, reversible quinoline-derivatized fluoresceins for sensing biological Zn(II). J Am Chem Soc 127(48):16812–16823PubMedCrossRefGoogle Scholar
  29. 29.
    Goldsmith CR, Lippard SJ (2006) Analogues of Zinpyr-1 provide insight into the mechanism of zinc sensing. Inorg Chem 45(16):6474–6478PubMedCrossRefGoogle Scholar
  30. 30.
    Jin Y, Yoon I, Seo J, Lee J-E, Moon S-T, Kim J, Han SW, Park K-M, Lindoy LF, Lee SS (2005) Cadmium(II) and mercury(II) complexes of an NO2S2-donor macrocycle and its ditopic xylyl-bridged analogue. Dalton Trans 4:788–796PubMedCrossRefGoogle Scholar
  31. 31.
    Lee SJ, Jung JH, Seo J, Yoon I, Park K-M, Lindoy LF, Lee SS (2006) A chromogenic macrocycle exhibiting Cation-selective and anion-controlled color change: an approach to understanding structure-color relationships. Org Lett 8(8):1641–1643PubMedCrossRefGoogle Scholar
  32. 32.
    Yoon S, Albers AE, Wong AP, Chang CJ (2005) Screening mercury levels in fish with a selective fluorescent chemosensor. J Am Chem Soc 127(46):16030–16031PubMedCrossRefGoogle Scholar
  33. 33.
    Masuhara H, Shioyama H, Saito T, Hamada K, Yasoshima S, Mataga N (1984) Fluorescence quenching mechanism of aromatic hydrocarbons by closed-shell heavy metal ions in aqueous and organic solutions. J Phys Chem 88(24):5868–5873CrossRefGoogle Scholar
  34. 34.
    Rurack K, Kollmannsberger M, Resch-Genger U, Daub J (2000) A selective and sensitive fluoroionophore for HgII, AgI, and CuII with virtually decoupled fluorophore and receptor units. J Am Chem Soc 122(5):968–969CrossRefGoogle Scholar
  35. 35.
    Karolin J, Johansson LB-A, Strandberg L, Ny T (1994) J Am Chem Soc 116(17):7801–7806CrossRefGoogle Scholar
  36. 36.
    Cui A, Peng X, Fan J, Chen X, Wu Y, Guo B (2007) Synthesis, spectral properties and photostability of novel boron-dipyrromethene dyes. J Photochem Photobiol A Chem 186(1):85–92CrossRefGoogle Scholar
  37. 37.
    Guo B, Peng X, Cui A, Wu Y, Tian M, Zhang L, Chen X, Gao Y (2007) Synthesis and spectral properties of new boron dipyrromethene dyes. Dyes Pigm 73(2):206–210CrossRefGoogle Scholar
  38. 38.
    Peng X, Du J, Fan J, Wang J, Wu Y, Zhao J, Sun S, Xu T (2007) A selective fluorescent sensor for imaging Cd2+ in living cells. J Am Chem Soc 129(6):1500–1501PubMedCrossRefGoogle Scholar
  39. 39.
    Wu Y, Peng X, Guo B, Fan J, Zha, ng Z, Wang J, Cui A, Gao Y (2005) Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(II) in living cells. Org Biomol Chem 3(8):1387–1392PubMedCrossRefGoogle Scholar
  40. 40.
    Baruah M, Qin W, Basaric N, De Borggaeve WM, Boens N (2005) BODIPY-based hydroxyaryl derivatives as fluorescent ph probes. J Org Chem 70(10):4152–4157PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations