Journal of Fluorescence

, Volume 18, Issue 2, pp 357–363 | Cite as

Efficient Construction of Pyrazolo[1,5-a]pyrimidine Scaffold and its Exploration as a New Heterocyclic Fluorescent Platform

  • Yan-Chao Wu
  • Hui-Jing Li
  • Li Liu
  • Dong Wang
  • Hua-Zheng Yang
  • Yong-Jun Chen
Original Paper


An efficient, fast and facile pyrazolo[1,5-a]pyrimidine synthetic protocol has been established by the condensation of aminopyrazoles with 1,3-dicarbonyl components in AcOH/H2SO4 system. The pyrazolo[1,5-a]pyrimidine sulfides were selectively oxidized to the sulfones via a temperature-controlled stepwise oxidative fashion. The correlation between the substitution patterns of these pyrazolo[1,5-a]pyrimidines and their fluorescent spectroscopic properties were further examined, which provided the fundamentals for their potential applications in the development of new fluorescent probes. Red-shifts were easily achieved by the incorporation of unsaturated groups at the 5- and 7-positions, which suggested an approach for synthesizing long wavelength pyrazolo[1,5-a]pyrimidine dyes. The fluorescent spectroscopic properties were found to be sensitive to the hydroxy-containing and carbonyl-containing media such as alcohol and acetone, which helps to confirm the promising perspectives of further investigations in this area.


Fluorophore Heterocycle Pyrazolo[1,5-a]pyrimidine Fluorescence 



We thank the National Key Project for Basic Research and the National Natural Science Foundation of China for financial support.


  1. 1.
    Chen C-T, Wagner H, Still WC, (1998) Fluorescent, sequence-selective peptide detection by synthetic small molecules. Science 279(5352):851–853PubMedCrossRefGoogle Scholar
  2. 2.
    Lavigne JJ, Anslyn EV (2001) Sensing a paradigm shift in the field of molecular recognition: from selective to differential receptors. Angew Chem, Int Ed 40(17):3119–3130CrossRefGoogle Scholar
  3. 3.
    Rurack K, Resch-Genger U (2002) Rigidization, preorientation and electronic decoupling—the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chem Soc Rev 31(2):116–127PubMedCrossRefGoogle Scholar
  4. 4.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum, New YorkGoogle Scholar
  5. 5.
    Kwanghee KP, Joon WP, Andrew DH (2007) Solvent and pH Effects on the fluorescence of 7-(Dimethylamino)-2-fluorenesulfonate. J Fluoresc 17(4):361–369CrossRefGoogle Scholar
  6. 6.
    Singh S, Singh PK (2007) Synthesis and fluorescence studies of some new fluorophores and their effect on hybridization of oligodeoxyribonucleotides. J Fluoresc 17(2):139–148PubMedCrossRefGoogle Scholar
  7. 7.
    Smith JA, West RM, Allen M (2004) Acridones and quinacridones: novel fluorophores for fluorescence lifetime studies. J Fluoresc 14(2):151–171PubMedCrossRefGoogle Scholar
  8. 8.
    Almansa C, de Arriba AF, Cavalcanti FL, Gomez LA, Miralles A, Merlos M, Garcia-Rafanell J, Forn J (2001) Synthesis and SAR of a new series of COX-2-selective inhibitors: pyrazolo[1,5-a]pyrimidines. J Med Chem 44(3):350–361PubMedCrossRefGoogle Scholar
  9. 9.
    Compton DR, Sheng SB, Carlson KE, Rebacz NA, Lee IY, Katzenellenbogen BS, Katzenellenbogen JA (2004) Pyrazolo[1,5-a]pyrimidines: estrogen receptor ligands possessing estrogen receptor beta antagonist activity. J Med Chem 47(24):5872–5893PubMedCrossRefGoogle Scholar
  10. 10.
    Selleri S, Bruni F, Costagli C, Costanzo A, Guerrini G, Ciciani G, Gratteri P, Besnard F, Costa B, Montali M, Martini C, Fohlin J, De Siena G, Aiello PA (2005) A novel selective GABA(A) alpha 1 receptor agonist displaying sedative and anxiolytic-like properties in rodents. J Med Chem 48(21):6756–6760PubMedCrossRefGoogle Scholar
  11. 11.
    Nishigaki F, Tsujimoto S, Yamamoto N, Kawamura I, Naoe Y, Inami M, Elizabeth L, Manda T, Shimomura K (1998) Effect of FR143430, a novel cytokine suppressive agent, on adenocarcinoma colon26-induced cachexia in mice. Anticancer Res 18(1A):139–144PubMedGoogle Scholar
  12. 12.
    Chen C, Wilcoxen KM, Huang CQ, Xie YF, McCarthy JR, Webb TR, Zhu YF, Saunders J, Liu XJ, Chen TK, Bozigian H, Grigoriadis DE (2004) Design of 2,5-dimethyl-3-(6-dimethyl-4-methylpyridin-3-yl)-7-dipropylamino-pyrazolo[1,5-a]pyrimidine (NBI 30775/R121919) and structure-activity relationships of a series of potent and orally active corticotropin-releasing factor receptor antagonists. J Med Chem 47(19):4787–4798PubMedCrossRefGoogle Scholar
  13. 13.
    Bartroli J, Turmo E, Alguero M, Boncompte E, Vericat ML, Conte L, Ramis J, Merlos M, García-Rafanell J, Forn J (1998) New azole antifungals. 2. Synthesis and antifungal activity of heterocyclecarboxamide derivatives of 3-amino-2-aryl-1-azolyl-2-butanol. J Med Chem 41(11):1855–1868PubMedCrossRefGoogle Scholar
  14. 14.
    Fraley ME, Rubino RS, Hoffman WF, Hambaugh SR, Arrington KL, Hungate RW, Bilodeau MT, Tebben AJ, Rutledge RZ, Kendall RL, McFall RC, Huckle WR, Coll KE, Thomas KA (2002) Optimization of a pyrazolo[1,5-a]pyrimidine class of KDR kinase inhibitors: improvements in physical properties enhance cellular activity and pharmacokinetics. Bioorg Med Chem Lett 12(24):3537–3541PubMedCrossRefGoogle Scholar
  15. 15.
    Wu YC, Liu L, Li HJ, Wang D, Chen YJ (2006) Skraup–Doebner–von Miller quinoline synthesis revisited: reversal of the regiochemistry for gamma-aryl-beta,gamma-unsaturated alpha-ketoesters. J Org Chem 71(17):6592–6595PubMedCrossRefGoogle Scholar
  16. 16.
    Wu YC, Song HB, Liu L, Wang D, Chen YJ (2005) 3-(4-Methoxystyryl)-2H-1,4-benzoxazin-2-one. Acta Cryst E61:o1590Google Scholar
  17. 17.
    Wu YC, Chen YJ, Li HJ, Zou XM, Hu FZ, Yang HZ (2006) Synthesis of trifluoromethyl-promoted functional pyrazolo[1,5-a]pyrimidine and pyrazolo[5,1-d] [1,2,3,5]tetrazine-4(3H)-ones. J Fluorine Chem 127(3):409–416CrossRefGoogle Scholar
  18. 18.
    Liu Z, Liu L, Shafiq Z, Wu YC, Wang D, Chen YJ (2007) InCl3-catalyzed propargylation of indoles and phenols with propargylic acetates: application to the syntheses of benzofurans and naphthofurans. Synthesis 13:1961–1969CrossRefGoogle Scholar
  19. 19.
    Coates RM, Hobbs SJ (1984) Alpha-alkoxyallylation of activated carbonyl-compounds – a novel variant of the michael reaction. J Org Chem 49(1):140–152CrossRefGoogle Scholar
  20. 20.
    Ried W, Aboulfetouh S (1988) Synthesis of new substituted pyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a]1,3,5-triazines. Tetrahedron 44(23):7155–7162CrossRefGoogle Scholar
  21. 21.
    Dalinger IL, Vatsadse IA, Shevelev SA, Ivachtchenko AV (2005) Liquid-phase synthesis of combinatorial libraries based on 7-trifluoromethyl-substituted pyrazolo[1,5-a]pyrimidine scaffold. J Comb Chem 7(2):236–245PubMedCrossRefGoogle Scholar
  22. 22.
    Gregg BT, Tymoshenko DO, Razzano DA, Johnson MR (2007) Pyrazolo[1,5-a]pyrimidines. Identification of the privileged structure and combinatorial synthesis of 3-(hetero)arylpyrazolo[1,5-a]pyrimidine-6-carboxamides. J Comb Chem 9(3):507–512 and references thereinPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Center for Molecular Science, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Institute of Element-Organic ChemistryNankai UniversityTianjinChina

Personalised recommendations