Journal of Fluorescence

, 18:131 | Cite as

Spectroscopic Properties of Er3+/Yb3+-codoped PbO–Bi2O3–Ga2O3–GeO2 Glasses

  • G. F. Yang
  • D. M. Shi
  • Q. Y. Zhang
  • Z. H. Jiang
Original Paper


We investigate the spectroscopic properties of the 1.5-μm emission from the 4I13/24I15/2 transition of Er3+ ions in PbO–Bi2O3–Ga2O3–GeO2 glasses for applications in broadband fiber amplifiers. The measured emission peak locates at 1,532 nm with a full width at half-maximum of ∼45 nm. The glasses exhibit a large stimulated emission cross-section of 0.89 × 10−20 cm2 and a large \( {\text{FWHM}} \times {\text{ $ \sigma $ }}_{{\text{e}}} ^{{{\text{peak}}}} \) product of 40.0. Infrared-to-green upconversion occurs simultaneously upon excitation of the 1.5-μm emission with a commercially available 980 nm laser diode. The green-upconversion intensity has a quadratic dependence on incident pump laser power, indicating a two-photon process. Energy transfer processes and nonradiative phonon-assisted decays could account for the population of the 2H11/2 of Er3+. The results indicate the possibility towards the development of lead–bismuth–gallate–germanate based glasses as photonics devices.


Heavy-metal oxide glasses Spectroscopic properties Er3+ Upconversion 



The authors would like to thank Mr. Z M Feng for his technical assistance. This work is jointly supported by NSFC (50602017, 50472053), GSTG (Guangzhou, 2006J1-C0491), and NFSG (Guangdong, 05300221).


  1. 1.
    Digonnet MJF (2001) Rare-earth-doped fiber lasers and amplifiers. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Reisfeld R, Jorgensen CK (1977) Lasers and excitated states of rare-earth. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. 3.
    Li T, Zhang QY, Liu YH, Zhang JJ, Deng ZD, Jiang ZH (2004) Infrared-to-visible upconversion and 1.53-μm emission of Er3+-doped Al(PO3)3-based fluorophosphate glass. Chin Phys Lett 21:1147–1149CrossRefGoogle Scholar
  4. 4.
    Oliveira AS, de Araujo MT, Gouveia-Neto AS, Sombra ASB, Neto JAM, Aranha N (1998) Upconversion fluorescence spectroscopy of Er3+/Yb3+-doped heavy metal Bi2O3–Na2O–Nb2O5–GeO2 glass. J Appl Phys 83:604–606CrossRefGoogle Scholar
  5. 5.
    Jiang SB, Luo T, Hwang BS, Smekatala F, Seneschal K, Lucas J, Peyghambarian N (2000) Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length. J Non-Cryst Solids 263:364–368CrossRefGoogle Scholar
  6. 6.
    MacFarlane DR, Newman PJ, Plathe R, Booth DJ (1999) Heavy metal oxide glasses as active materials. Proc SPIE 3849:94–102CrossRefGoogle Scholar
  7. 7.
    Kharlamov AA, Almeida RM, Heo J (1996) Vibrational spectra and structure of heavy metal oxide glasses. J Non-Cryst Solids 202:233–240CrossRefGoogle Scholar
  8. 8.
    Zhang QY, Li T, Jiang ZH (2005) 980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate–bismuth–lead glasses. Appl Phys Lett 87:171911CrossRefGoogle Scholar
  9. 9.
    Kassab LRP, Tatumi SH, Mendes CMS, Courrol LC, Wetter NU (2000) Optical properties of Nd doped Bi2O3–PbO–Ga2O3 glasses. Opt Express 6:104–108PubMedCrossRefGoogle Scholar
  10. 10.
    Song JH, Heo J, Park SH (2003) Emission properties of PbO–Bi2O3–Ga2O3–GeO2 glasses doped with Tm3+ and Ho3+. J Appl Phys 93:9441–9445CrossRefGoogle Scholar
  11. 11.
    Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev B 127:750–761CrossRefGoogle Scholar
  12. 12.
    Ofelt GS (1962) Intensities of crystal spectra and decay of Er3+ fluorescence in LaF3. J Chem Phys 37:511–520CrossRefGoogle Scholar
  13. 13.
    Weber MJ (1967) Probabilities for radiative and nonradiative decay of Er3+ in LaF3. Phys Rev 157:262–272CrossRefGoogle Scholar
  14. 14.
    Ohishi Y, Mori A, Yamada M, Ono H, Nishida Y, Oikawa K (1998) Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification. Opt Lett 23:274–276PubMedGoogle Scholar
  15. 15.
    Jacobs RR, Weber MJ (1976) Dependence of the 4F3/24I11/2 induced-emission cross section for Nd3+ on glass composition. IEEE J Quantum Electron 12:102–111CrossRefGoogle Scholar
  16. 16.
    McCumber DE (1964) Theory of phonon-terminated optical masers. Phys Rev 134(2A):299–306CrossRefGoogle Scholar
  17. 17.
    Miniscalco WJ, Quimby RS (1991) General procedure for the analysis of Er3+ cross sections. Opt Lett 16:258–260CrossRefPubMedGoogle Scholar
  18. 18.
    Wang JS, Vogel EM, Snitzer E (1994) Tellurite glass: a new candidate for optical devices. Opt Mater 3:187–203CrossRefGoogle Scholar
  19. 19.
    Zou XL, Izumitani T (1993) Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses. J Non-Cryst Solids 162:68–80CrossRefGoogle Scholar
  20. 20.
    Jiang SB, Luo T, Hwang BS, Smekatala F, Seneschal K, Lucas J, Peyghambarian N (2000) Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length. J Non-Cryst Solids 263:364–368CrossRefGoogle Scholar
  21. 21.
    Shen SX, Naftaly M, Jha A (1999) Tm3+- and Er3+-doped tellurite glass fibers for a broadband amplifier at 1430 to 1600 nm. Proc SPIE 3849:103–110CrossRefGoogle Scholar
  22. 22.
    Dai SX, Yang JH, Wen L, Hu LL, Jiang ZH (2003) Effect of radiative trapping on measurement of the spectroscopic properties of Yb3+: phosphate glasses. J Lumin 104:55–63CrossRefGoogle Scholar
  23. 23.
    Chen DD, Liu YH, Zhang QY, Deng ZD, Jiang ZH (2005) Thermal stability and spectroscopic properties of Er3+-doped niobium tellurite glasses for broadband amplifiers. Mater Chem Phys 90:78–82CrossRefGoogle Scholar
  24. 24.
    Pollnau M, Gamelin DR, Luthi SR, Gudel HU, Hehlen MP (2000) Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys Rev B 61:3337–3346CrossRefGoogle Scholar
  25. 25.
    Muller P, Wermuth M, Gudel HU (1998) Mechanisms of near-infrared to visible upconversion in CsCdBr3: Ho3+. Chem Phys Lett 290:105–111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • G. F. Yang
    • 1
  • D. M. Shi
    • 1
  • Q. Y. Zhang
    • 1
  • Z. H. Jiang
    • 1
  1. 1.Key Lab of Specially Function Materials of Ministry of Education, and Institute of Optical Communication MaterialsSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations