Journal of Fluorescence

, Volume 17, Issue 4, pp 437–443 | Cite as

Is Phosphorescence Lifetime an Indicator of Angiogenesis in Cortical Sarcoma?

Original Paper


In this paper, the oxygen dependent phosphorescence quenching method is proposed to study the correlation between the phosphorescence lifetime and microvessel density in tumors. In the implementation, the S180 transplanted tumor in the mouse is used for the collection of the time-resolved phosphorescence, the tumor microvessel density is measured by immunohistochemical examination of FVIII, the correlation between microvessel density and phosphorescence lifetime is analyzed by multiple regression method. The results show the phosphorescence decay constant measured in tumors is enlarged in the tumor progression. Furthermore, the relative total microvessel area is positively correlative with the phosphorescence lifetime, which is estimated by a two dimension regression equation. It is concluded phosphorescence lifetime is a valuable indicator of angiogenesis during the tumor development.


Angiogenesis Microvessel density Phosphorescence quenching Pd-TCPP Phosphorescence lifetime 



The work was supported by Shenzhen Science and Technology Program (No.200519).


  1. 1.
    Folkman J (1990) What is the evidence that tumors are angiogenesis dependent. J Natl Cancer Inst 82(1):4–6PubMedCrossRefGoogle Scholar
  2. 2.
    Bouck N (1990) Tumor angiogenesis: the role of oncogenes and tumor suppressor genes. Cancer Cells 2:179–185PubMedGoogle Scholar
  3. 3.
    Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61PubMedCrossRefGoogle Scholar
  4. 4.
    Weidner N, Semple JP, Welch WR (1991) Tumor angiogenesis and metastasis: correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8PubMedCrossRefGoogle Scholar
  5. 5.
    Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S, Gasparini G (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84:1875–1887PubMedCrossRefGoogle Scholar
  6. 6.
    Feng BC, Liu KL (1991) A morphological study of stromal microvasculature of nasopharyngeal precancerous lesions. Chin Med J 104:422–424PubMedGoogle Scholar
  7. 7.
    Wesseling P, Laak JAWM, Leeuw HD, Rutter DJ, Burger PC (1994) Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme. J Neurosurg 81:902–909PubMedCrossRefGoogle Scholar
  8. 8.
    Fox SB, Leek RD, Weekes MP, Whitehouse RM, Gatter KC, Harris AL (1995) Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, chalkley count, and computer image analysis. J Pathol 177:275–283PubMedCrossRefGoogle Scholar
  9. 9.
    Zeng H, MacAulay C, Palcic B, Mclean DI (1993) A computerized autofloruescence and diffuse reflectance spectroanalyser for in vivo skin studies. Phys Med Biol 38:231–240PubMedCrossRefGoogle Scholar
  10. 10.
    Zeng H, MacAulay C, McLean DI, Palcic B (1993) Novel microspectrophotometer and its biomedical applications. Opt Eng 32(8):1809–1813CrossRefGoogle Scholar
  11. 11.
    Alfano RR, Tang GC, Pradhan A, Lam W (1987) Fluorescence spectra from cancerous and normal human breast and lung tissues. IEEE J Quantum Electron QE-23:1806–1811CrossRefGoogle Scholar
  12. 12.
    Ramanujam N, Mitchell MF, Mahadevan A, Thomsen S, Malpica A, Wright T, Atkinson A, Richards-Kortum RR (1996) Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo. Lasers Surg Med 19(1):46–62PubMedCrossRefGoogle Scholar
  13. 13.
    Schomacker KT, Frisoli JK, Compton CC, Flotte TJ, Richter JM, Nishioka NS, Deutsch TF (1992) Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential. Lasers Surg Med 12:63–78PubMedCrossRefGoogle Scholar
  14. 14.
    Panjehpour M, Overholt BF, Schmidhammer JL, Farris C, Buckley PF, Vo-Dinh T (1995) Spectroscopic diagnosis of esophageal cancer: new classification model, improved measurement system. Gastrointest Endosc 45:577–581CrossRefGoogle Scholar
  15. 15.
    Bottiroli G, Croce AC, Locatelli D, Nano R, Giombelli E, Messina A, Benericetti E (1998) Brain tissue autofluorescence: an aid for intraoperative delineation of tumor resection margins, Cancer detection. Prevent 22(4):330–339Google Scholar
  16. 16.
    Lakowicz J (1983) Principles of fluorescence spectroscopy. Plenum, New YorkGoogle Scholar
  17. 17.
    Schomacker KT, Frisoli JK, Compton CC, Flotte TJ, Richter JM, Deutsch TF (1992) Ultraviolet laser-induced fluorescence of colonic polyps. Gastroenterology 102:1155–1160PubMedGoogle Scholar
  18. 18.
    Wilson DF, Cerniglia GJ (1994) Oxygenation of tumors as evaluated by phosphorescence imaging. Adv Exp Med Biol 345:539–547PubMedGoogle Scholar
  19. 19.
    Wilson DF, Vinogradov S, Lo LW, Huang L (1996) Oxygen dependent quenching of phosphorescence: a status report. Adv Exp Med Biol 388:101–107PubMedGoogle Scholar
  20. 20.
    Wilson DF, Vinogradov SA (1994) Recent advances in oxygen measurements using phosphorescence quenching. Adv Exp Med Biol 361:61–66PubMedGoogle Scholar
  21. 21.
    Zheng L, Golub AS, Pittman RN (1996) Determination of PO2 and its heterogeneity in single capillaries. Am J Physiol 271(Heart Cire. Physiol. 40):H365–H372PubMedGoogle Scholar
  22. 22.
    Sinaasappel M, Ince C (1996) Calibration of Pd-porphyrin phosphorescence for oxygen concentration measurements in vivo. J Appl Physiol 81(5):2297–2303PubMedGoogle Scholar
  23. 23.
    Lee SK, Shin YB, Pyo HB, Park SH, Ogura SI, Okura I (2001) Measurement of oxygen concentrations in tumor cells by the phosphorescence quenching method. Bull Korean Chem Soc 22(3):259–260Google Scholar
  24. 24.
    Hansen-Algenstaedt N, Stoll BR, Padera TP, Dolmans DEJ, Hicklin DJ, Fukumura D, Jain RK (2000) Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy. Cancer Res 60:4556–4560PubMedGoogle Scholar
  25. 25.
    Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465PubMedGoogle Scholar
  26. 26.
    Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182PubMedCrossRefGoogle Scholar
  27. 27.
    Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416PubMedGoogle Scholar
  28. 28.
    Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845PubMedCrossRefGoogle Scholar
  29. 29.
    Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK, Seed B (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725PubMedCrossRefGoogle Scholar
  30. 30.
    Qian CN, Min HQ, Liang XM (1997) Primary study of neovasculature correlating with metastatic nasopharyngeal carcinoma using computer image analysis. J Cancer Res Clin Oncol 123(11–12):645–651PubMedCrossRefGoogle Scholar
  31. 31.
    Braun RD, Lanzen JL, Snyder SA, Dewhirst MW (2001) Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents. Am J Physiol 280:H2533–H2544Google Scholar
  32. 32.
    Dewhirst MW, Ong ET, Klitzman B, Secomb TW, Vinuya RZ, Dodge R, Brizel D, Gross JF (1992) Perivascular oxygen tensions in a transplantable mammary tumor growing in a dorsal flap window chamber. Radiat Res 130:171–182PubMedCrossRefGoogle Scholar
  33. 33.
    Dewhirst MW, Ong ET, Braun RD, Smith B, Klitzman B, Evans SM, Wilson D (1999) Quantification of longitudinal tissue PO2 Gradients in widow chamber tumours: impact of tumour hypoxia. Br J Cancer 79:1717–1722PubMedCrossRefGoogle Scholar
  34. 34.
    Byrne M, Bouchier-Hayes DJ, Harmey JH (2005). Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 9(4):777PubMedCrossRefGoogle Scholar
  35. 35.
    Pitts JD, Mycek MA (2001) Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution. Rev Sci Instrum 72(7):3061–3072CrossRefGoogle Scholar
  36. 36.
    Vishwanath K, Pogue B, Mycek MA (2002) Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods. Phys Med Bio 47:3387–3405CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.College of Engineering and TechnologyShenzhen UniversityShenzhenChina
  2. 2.Academy of Metrology and Quality Inspection of ShenzhenShenzhenChina
  3. 3.Shenzhen People’s HospitalShenzhenChina
  4. 4.Zhongshan UniversityGuangzhouChina

Personalised recommendations