Journal of Fluorescence

, Volume 17, Issue 5, pp 466–480 | Cite as

Two-Photon Excited Fluorescence and Molecular Reorientations in Liquid Solutions

  • Linus Ryderfors
  • Emad Mukhtar
  • Lennart B.-Å. Johansson
Original Paper


Theoretical expressions are derived that relate the two-photon excited fluorescence depolarisation experiments to the molecular symmetry and the rotational motions of fluorescent molecules. Diffusive rotational motions in liquid solvents are considered, as well as the influence of fast unresolved motions (e.g. librations). The results obtained are compared with one-photon excited fluorescence depolarisation experiments. The derived theoretical expressions can be applied for detailed analyses of the molecular rotation in solvent. Several of the results are useful for determining and assigning the components of two-photon absorption tensors.


Two-photon excited fluorescence Two-photon excited fluorescence depolarisation Two-photon excited anisotropy Theory of rotational motion Rotational diffusion Librations Perylene 



diffusion frame coordinate system

\( D^{{{\left( C \right)}}}_{{{\text{nm}}}} {\left( {\alpha ,\beta ,\gamma } \right)} \)

a Wigner rotation matrix element

(DX, DY, DZ)

the diagonal elements of the diffusion tensor \(\tilde D\)


difference curve constructed from depolarisation experiments


laboratory coordinate system


molecular coordinate system


one-photon excitation

\( \ifmmode\expandafter\vec\else\expandafter\vecabove\fi{\mu } \)

electronic transition dipole moment


two-photon polarisation ratio


α AB, β AB, β AB denote the Eulerian angles that transform from the A to the B frame


time-resolved fluorescence anisotropy


sum curve constructed from depolarisation experiments


fluorescence relaxation

\( \tilde T \)

two-photon absorption transition tensor


two-photon excitation



This work was financially supported by the Swedish Research Council.


  1. 1.
    Perrin F (1929) La fluorescence des solutions. Induction moléculaire—polarisation et dureé d’émission—photochemie. Ann Phys 12:169–275Google Scholar
  2. 2.
    Zinsli PE (1977) Anisotropic rotation and libration of perylene in paraffin. Chem Phys 20:299–309CrossRefGoogle Scholar
  3. 3.
    Barkley MD, Kowalczyk AA, Brand L (1981) Fluorescence decay studies of anisotropic rotations of small molecules. J Chem Phys 75:3581–3593CrossRefGoogle Scholar
  4. 4.
    Zannoni C, Arcioni A, Cavatorta P (1983) Fluorescence depolarsation in liquid crystals and membrane bilayers. Chem Phys Lipids 32:179–250CrossRefGoogle Scholar
  5. 5.
    Levine YK, Van Ginkel G (1994) In: Luckhurst GA, Veracini CA (eds) The molecular dynamics of liquid crystals. Kluwer Academic, Dordrecht pp 537–571Google Scholar
  6. 6.
    Johansson LB-Å, Lindblom G (1980) Orientation and mobility of molecules in membranes studied by polarised light spectroscopy. Q Rev Biophys 13:63–118PubMedGoogle Scholar
  7. 7.
    Yugerabide J, Epstein HF, Stryer L (1970) Segmental flexibility in an antibody molecule. J Mol Biol 51:573–590CrossRefGoogle Scholar
  8. 8.
    Holowka D, Wensel T, Baird B (1990) A nanosecond fluorescence depolarisation study on the segmental flexibility of receptor-bound immunoglobulin E. Biochemistry 29:4607–4612PubMedCrossRefGoogle Scholar
  9. 9.
    Karolin J, Johansson LB-Å, Strandberg L, Ny T (1994) Fluorescence and absorption spectroscopic properties of dipyrrometheneboron difluoride (BODIPY) derivatives in liquids, lipid membranes, and proteins. J Am Chem Soc 116:7801–7806CrossRefGoogle Scholar
  10. 10.
    Favro LD (1960) Theory of the rotational Brownian Motion of a free rigid body in solution. Phys Rev 119:53–62CrossRefGoogle Scholar
  11. 11.
    Tao T (1969) Time-dependent fluorescence depolarisation and Brownian rotational diffusion coefficients of macromolecules. Biopolymers 8:609–632CrossRefGoogle Scholar
  12. 12.
    Ehrenberg M, Rigler R (1972) Polarised fluorescence and rotational Brownian motion. Chem Phys Lett 14:539–544CrossRefGoogle Scholar
  13. 13.
    Chuang TJ, Eisenthal KB (1972) Theory of fluorescence depolarisation by anisotropic rotational diffusion. J Chem Phys 57:5094–5097CrossRefGoogle Scholar
  14. 14.
    Wan C, Johnson CK (1994) Time-resolved two-photon induced anisotropy decay: the rotational diffusion regime. J Chem Phys 101:10283–10291CrossRefGoogle Scholar
  15. 15.
    Volkmer A, Hatrick DA, Birch DJS (1997) Time-resolved nonlinear fluorescence spectroscopy using femtosecond multiphoton excitation and single-photon timing detection. Meas Sci Technol 8:1339–1349CrossRefGoogle Scholar
  16. 16.
    Lakowicz JR, Gryczynski I, Gryczynski Z, Danielsen E, Wirth MJ (1992) Time-resolved fluorescence intensity and anisotropy decays of 2,5-diphenyloxazole by two-photon excitation and frequency-domain fluorometry. J Phys Chem 96:3000–3006CrossRefGoogle Scholar
  17. 17.
    Callis PR (1997) Topics in fluorescence spectroscopy. 5:1–42Google Scholar
  18. 18.
    Volkmer A, Subramaniam V, Birch DJS, Jovin TM (2000) One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys J 78:1589–1598PubMedGoogle Scholar
  19. 19.
    Geddes CD, Karolin J, Birch DJS (2002) 1- and 2-photon fluorescence anisotropy decay in silicon alkoxide sol-gels: interpretation in terms of self-assembled nanoparticles. J Phys Chem B 106:3835–3841CrossRefGoogle Scholar
  20. 20.
    Belfield KD, Bondar MV, Hales JM, Morales AR, Przhonska (2005) One-and two-photon fluorescence anisotropy of selected fluorene derivatives. J Fluoresc 15:3–11PubMedCrossRefGoogle Scholar
  21. 21.
    Ryderfors L, Mukhtar E, Johansson LB-Å (2005) Two-photon excited fluorescence depolarisation experiments: II. The proper response function for analysing TCSPC data. Chem Phys Lett 411:51–60CrossRefGoogle Scholar
  22. 22.
    Pauls SW, Hedstrom JF, Johnson CK (1998) Rotational relaxation of perylene in n-alcohols and n-alkanes studied by two-photon-induced anisotropy decay. Chem Phys 237:205–222CrossRefGoogle Scholar
  23. 23.
    Chen S-Y, Van der Meer BW (1993) Theory of two-photon induced fluorescence annisotropy decay in membranes. Biophys J 64:1567–1575CrossRefPubMedGoogle Scholar
  24. 24.
    Wan C, Johnson CK (1994) Time-resolved anisotropic two-photon spectroscopy. Chem Phys 179:513–531CrossRefGoogle Scholar
  25. 25.
    Jablonski A (1950) Influence of torosional vibrations of luminescent molecules on the fundamental polarisation of photoluminiscence of solutions. Acta Phys Pol 10:33–36Google Scholar
  26. 26.
    Brocklehurst B, Young RN (1995) Rotation of perylene in alkanes: nonhydrodynamic behavior. J Phys Chem 99:40–43CrossRefGoogle Scholar
  27. 27.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy. Plenum, New YorkGoogle Scholar
  28. 28.
    Valeur B (2002) Molecular fluorescence. Principles and Applications. Wiley-VCHGoogle Scholar
  29. 29.
    Van der Meer BW, Coker G III, Chen S-YS (1994) Resonance energy transfer: theory and data. VCH, New YorkGoogle Scholar
  30. 30.
    McClain WM (1971) Excited state symmetry assignment through polarised two-photon absorption studies of fluids. J Chem Phys 55:2789–2796CrossRefGoogle Scholar
  31. 31.
    Brink DM, Satchler GR (1993) Angular momentum. Clarendon, OxfordGoogle Scholar
  32. 32.
    Huntress WT (1968) Effects of anisotropic molecular rotational diffusion on nuclear magnetic relaxation in liquids. J Chem Phys 48:3524–3533CrossRefGoogle Scholar
  33. 33.
    Jablonski A (1960) On the notion of anisotropy. Bull Acad Pol Sci, Ser A 8:259–264Google Scholar
  34. 34.
    Friedrich DM, McClain WM (1980) Two-photon molecular electronic spectroscopy. Ann Rev Phys Chem 31:577CrossRefGoogle Scholar
  35. 35.
    Corrêa DS, Oliveira SL, Misoguti L, Zilio SC, Aroca RF, Constantino CJL, Mendonça CR (2006) Investigation of the two-photon absorption cross-section in perylene tetracarboxylic derivatives: nonlinear spectra and molecular structure. J Phys Chem A 110:6433–6438PubMedCrossRefGoogle Scholar
  36. 36.
    Johansson LB-Å (1990) Limiting fluorescence anisotropies of perylene and xanthene derivatives. J Chem Soc Faraday Trans 86:2103–2107CrossRefGoogle Scholar
  37. 37.
    Kalman B, Clarke N, Johansson LB-Å (1989) Dynamics of a new fluorescent probe, 2,5,8,11-tetra-tert-butylperylene, in Solution, cubic lyotropic liquid crystals and model membranes. J Phys Chem 93:4608–4615CrossRefGoogle Scholar
  38. 38.
    Hubbard PS (1969) Some properties of correlation functions of irreducible tensor operators. Phys Rev 180:319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Linus Ryderfors
    • 1
  • Emad Mukhtar
    • 1
  • Lennart B.-Å. Johansson
    • 2
  1. 1.Department of Photochemistry and Molecular ScienceUppsala UniversityUppsalaSweden
  2. 2.Department of Chemistry Biophysical ChemistryUmeå UniversityUmeåSweden

Personalised recommendations