Journal of Fluorescence

, Volume 17, Issue 5, pp 455–459 | Cite as

Recent Advances in the Use of Intrinsic Fluorescence for Bacterial Identification and Characterization

  • Mohammed Salim Ammor
Short Communication


Live bacteria contain a variety of intracellular biomolecules that have specific excitation and emission wavelength spectra characterizing their intrinsic fluorescence. This paper reviews recent developed methods using bacterial intrinsic fluorescence for identification and characterization purposes. Potential applications of such methods at the industrial level are also addressed.


Fluorescence spectroscopy Intrinsic fluorophores Autofluorescence Identification of bacteria Bacterial metabolism Chemometry 


  1. 1.
    Nelson WH (1985) Instrumental methods for rapid microbiological analysis. Vch Pub, New YorkGoogle Scholar
  2. 2.
    Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14(7):599–624CrossRefGoogle Scholar
  3. 3.
    Cantor CR, Schimmel PR (1980) In: Cantor CR, Schimmel PR (eds) Biophysical chemistry. Part II: techniques for the study of biological structure and function, Freeman, New York, pp. 409–480Google Scholar
  4. 4.
    Hairston PP, Ho J, Quant FR (1997) Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence. J Aerosol Sci 28(3):471–482PubMedCrossRefGoogle Scholar
  5. 5.
    Mason HY, Lloyd C, Dice M, Sinclair R, Ellis W Jr, Powers L (2003) Taxonomic identification of microorganisms by capture and intrinsic fluorescence detection. Biosens Bioelectron 18(5–6):521–527PubMedCrossRefGoogle Scholar
  6. 6.
    Tannock GW (1999) Identification of lactobacilli and bifidobacteria. Curr Issues Mol Biol 1(1–2):53–64PubMedGoogle Scholar
  7. 7.
    Bhatta H, Goldys EM, Learmonth RP (2006) Use of fluorescence spectroscopy to differentiate yeast and bacterial cells. Appl Microbiol Biotechnol 71(1):121–126PubMedCrossRefGoogle Scholar
  8. 8.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum, New YorkGoogle Scholar
  9. 9.
    Leblanc L, Dufour E (2002) Monitoring the identity of bacteria using their intrinsic fluorescence. FEMS Microbiol Lett 211(2):147–153PubMedCrossRefGoogle Scholar
  10. 10.
    Ammor S, Yaakoubi K, Chevallier I, Dufour E (2004) Identification by fluorescence spectroscopy of lactic acid bacteria isolated from a small-scale facility producing traditional dry sausages. J Microbiol Methods 59(2):271–281PubMedCrossRefGoogle Scholar
  11. 11.
    Ammor MS, Delgado S, Alvarez-Martin P, Margolles A, Mayo B (2007) Reagentless identification of human bifidobacteria by intrinsic fluorescence. J Microbiol Methods 69(1):100–106PubMedCrossRefGoogle Scholar
  12. 12.
    Sorrell MJ, Tribble J, Reinisch L, Werkhaven JA, Ossoff RH (1994) Bacteria identification of otitis media with fluorescence spectroscopy. Lasers Surg Med 14(2):155–163PubMedCrossRefGoogle Scholar
  13. 13.
    Spector BC, Reinisch L, Smith D, Werkhaven JA (2000) Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model. Laryngoscope 110(7):1119–1123PubMedCrossRefGoogle Scholar
  14. 14.
    Giana HE, Silveira L, Zangaro RA, Pacheco MTT (2003) Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis. J Fluoresc 13(6):489–493CrossRefGoogle Scholar
  15. 15.
    Roselle DC, Seaver M, Eversole JD (1998) Changes in intrinsic fluorescence during the production of viable but nonculturable Escherichia coli. J Ind Microbiol Biotech 20(5):265–267CrossRefGoogle Scholar
  16. 16.
    Alimova A, Katz A, Savage HE, Shah M, Minko G, Will DV, Rosen RB, McCormick SA, Alfano RR (2003) Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation. Appl Opt 42(19):4080–4087PubMedCrossRefGoogle Scholar
  17. 17.
    Leblanc L, Dufour E (2004) Monitoring bacteria growth using their intrinsic fluorescence. Sci Alim 24(3):207–220CrossRefGoogle Scholar
  18. 18.
    Estes C, Duncan A, Wade B, Lloyd C, Ellis W Jr, Powers L (2003) Reagentless detection of microorganisms by intrinsic fluorescence. Biosens Bioelectron 18(5–6):511–519PubMedCrossRefGoogle Scholar
  19. 19.
    Agranovski V, Ristovski ZD (2005) Real-time monitoring of viable bioaerosols: capability of the UVAPS to predict the amount of individual microorganisms in aerosol particles. J Aerosol Sci 36(5–6):665–676CrossRefGoogle Scholar
  20. 20.
    Luoma GA, Cherrier PP, Retfalvi LA (1999). Real-time warning of biological-agent attacks with the Canadian Integrated Biochemical Agent Detection System II (CIBADS II). Field Anal Chem Technol 3(4–5):260–273CrossRefGoogle Scholar
  21. 21.
    Laflamme C, Verreault D, Lavigne S, Trudel L, Ho J, Duchaine C (2005) Autofluorescence as a viability marker for detection of bacterial spores. Front Biosci 10:1647–1653PubMedCrossRefGoogle Scholar
  22. 22.
    Primmerman CA (2000) Detection of biological agents. Linc Lab J 12:3–32Google Scholar
  23. 23.
    Eversole JD, Cary WK, Scotto JCS, Pierson R, Spence M, Campillo AJ (2001) Continuous bioaerosol monitoring using UV excitation fluorescence: outdoor test results. Field Anal Chem Technol 5(4):205–212CrossRefGoogle Scholar
  24. 24.
    Courvoisier F, Boutou V, Guyon L, Roth M, Rabitz H, Wolf J-P (2006) Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics. J Photochem Photobiol, A Chem 180(3):300–306CrossRefGoogle Scholar
  25. 25.
    Hill SC, Pinnick RG, Niles S, Fell NF, Pan YL, Bottiger J, Bronk BV, Holler S, Chang RK (2001) Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity. Appl Opt 40(18):3005–3013CrossRefGoogle Scholar
  26. 26.
    Reyes FL, Jeys TH, Newbury NR, Primmerman CA, Rowe GS, Sanchez A (1999) Bio-aerosol fluorescence sensor. Field Anal Chem Technol 3(4–5):240–248CrossRefGoogle Scholar
  27. 27.
    Leriche F, Bordessoules A, Fayolle K, Karoui R, Laval K, Leblanc L, Dufour E (2004) Alteration of raw-milk cheese by Pseudomonas spp.: monitoring the sources of contamination using fluorescence spectroscopy and metabolic profiling. J Microbiol Methods 59(1):33–41PubMedCrossRefGoogle Scholar
  28. 28.
    Ju LK, Chen F, Xia Q (2005) Monitoring microaerobic denitrification of Pseudomonas aeruginosa by online NAD(P)H fluorescence. J Ind Microbiol Biotechnol 32(11–12):622–628PubMedGoogle Scholar
  29. 29.
    Chen F, Xia Q, Ju LK (2003) Aerobic denitrification of Pseudomonas aeruginosa monitored by online NAD(P)H fluorescence. Appl Environ Microbiol 69(11):6715–6722PubMedCrossRefGoogle Scholar
  30. 30.
    Alimova A, Katz A, Siddique M, Minko G, Savage HE, Shah MK, Rosen RB, Alfano RR (2005) Native fluorescence changes induced by bactericidal agents. IEEE Sensors J 5(4):704–711CrossRefGoogle Scholar
  31. 31.
    Wang H, Wang J, Xu J, Cai RX (2006) Study on the influence of potassium iodate on the metabolism of Escherichia coli by intrinsic fluorescence. Spectrochim Acta A Mol Biomol Spectrosc 64(2):316–320PubMedCrossRefGoogle Scholar
  32. 32.
    European Commission, Opinion of the Scientific Committee on Animal Nutrition on the crieria for assessing the safety of micro-organisms resistant to antibiotics of human clinical and veterinary importance. Available from [accessed on 18 April 2001]. (2001)
  33. 33.
    Jollife IT (2002) Principal component analysis. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science & TechnologyAgricultural University of AthensAthensGreece

Personalised recommendations