Skip to main content
Log in

Fluorimetric Determination of Sulphaguanidine and Sulphamethoxazole by Host-Guest Complexation in β-Cyclodextrin and Partial Least Squares Calibration

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The host-guest inclusion complexes of sulphamethoxazole (SMTX) and sulphaguanidine (SGN) with β-cyclodextrin, in aqueous solutions, have been investigated. A 1:1 stoichiometry of the complexes was established, the association constants were calculated by different methods, and the influence of several chemical variables on the complexation processes were established. According to the results obtained, a spectrofluorimetric method for the determination of these sulphonamides has been proposed. The individual and binary mixtures of both sulphonamides have been determined in human urine samples, at representative therapeutic ranges, by application of a first-order multivariate calibration partial least squares (PLS-1) model. The calibration set was designed with 9 samples, containing different concentrations of the two sulphonamides, and 8 blank urine samples, with the aim of modelling the variability of the background. The concentration ranges for the sulphonamides were up to 0.5 μg mL−1 for SMTX and 1.0 μg mL−1 for SGN. Figures of merit as selectivity, analytical sensitivity and limit of detection (LOD) were also calculated. The proposed procedure was validated by comparing the obtained results with a HPLC method, with satisfactory results for the assayed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marek J et al (1998) Farmakoterapie vnitrnich nemoci (Pharmacotherapy of Internal Diseases). Grada Publishing, Prague, pp. 159

    Google Scholar 

  2. Esteve-Romero J, Carda-Broch S, Gil-Agusti M, Capella-Peiro ME, Bose D (2005) Trends Anal Chem 24:75–91

    Article  CAS  Google Scholar 

  3. Msagati TAM, Nindi MM (2004) Talanta 64:87–100

    Article  CAS  Google Scholar 

  4. Bridges JW, Gifford LA, Hayes WP, Miller JN, Thorburn Burns D (1974) Anal Chem 46:1010–1017

    Article  CAS  Google Scholar 

  5. Sakano T, Amano T (1976) Yakugaku Zasshi 96:1114–1121

    CAS  PubMed  Google Scholar 

  6. Sterling JM, Haney WG (1974) J Pharm Sci 63:1448–1450

    Article  CAS  PubMed  Google Scholar 

  7. Arthur J, de Silva F, Strojny N (1975) Anal Chem 47:714–718

    Article  Google Scholar 

  8. Steward JT, Wilkin RE (1972) J Pharm Sci 61:432–433

    Article  Google Scholar 

  9. Sánchez Peña M, Salinas F, Mahedero MC, Aaron JJ (1992) J Pharm Biomed Anal 10:805–808

    Article  PubMed  Google Scholar 

  10. Petz M (1987) J Chromatogr 423:217–225

    Article  CAS  PubMed  Google Scholar 

  11. Schwaiger I, Schuch R (2000) Dtsch Lebebsm-Rundsch 96:93

    Google Scholar 

  12. Posyniak A, Sniegocki T, Zmudzki J (2002) Bull Vet Inst Pulawy 46:111

    Google Scholar 

  13. Martel AC, Zeggan S (2003) J Liq Chromatogr Rel Technol 26:953

    Article  CAS  Google Scholar 

  14. Pang GF, Cao YZ, Fan CL, Zhang JJ, Li XM, Li ZY, Jia GQ (2003) Anal Bioanal Chem 376:534

    Article  CAS  PubMed  Google Scholar 

  15. Maudens E, Zhang G-F, Lambert WE (2004) J Chromatogr 1047:85–92

    Article  CAS  Google Scholar 

  16. Szejtli J (1982) Cyclodextrins and their Inclusion Complexes. Akademiai Kiado, Budapest

    Google Scholar 

  17. Scypinski S, Love JLC (1984) Anal Chem 56:331–336

    Article  CAS  Google Scholar 

  18. Muñoz de la Peña A, Ndou TT, Zung JB, Greene KL, Live DH, Warner IM (1991) J Am Chem Soc 113:1572–1577

    Article  Google Scholar 

  19. Muñoz de la Peña A, Durán Merás I, Salinas F, Warner IM, Ndou TT (1991) Anal Chim Acta 255:351–336

    Article  Google Scholar 

  20. Szente L, Szejtli J (1998) Analyst 123:735–741

    Article  CAS  Google Scholar 

  21. Okamoto H, Uetake A, Tamaya R, Nakajima T, Sagara K, Ito Y (2000) J Chromatogr A 888:299–308

    Article  CAS  PubMed  Google Scholar 

  22. Bio. Rad Application Note (1999) 1575–45 2

  23. Muñoz de la Pena A, Salinas F, Duran-Meras I, Dolores Moreno M (1994) Anal Lett 27:1893

    Google Scholar 

  24. Forina M, Casolino MC, De la Pezuela Martínez C (1998) J Pharma Biomed Anal 18:21–33

    Article  CAS  Google Scholar 

  25. Salmain M, Varenne A, Vessieres A, Jaouen G (1998) Appl Spectrosc 52:1383–1390

    Article  CAS  Google Scholar 

  26. Espinosa-Mansilla A, Acedo-Valenzuela MI, Muñoz de la Peña A, Salinas F, Cañada-Cañada F (2001) Anal Chim Acta 427:129–136

    Article  CAS  Google Scholar 

  27. Wold S, Martens H, Wold H (1983) In: Rube A, Kagstrom B (eds.) The Multivariate Calibration Problem in Chemistry Solved by PLS: Matrix Pencils (in the series, lecture notes in mathematics) Springer, Heidelber, pp. 286

  28. Goicoechea HC, Iñon FA, Olivieri AC (2004) Chem Intell Lab Syst 73:189–197

    Article  Google Scholar 

  29. MATLAB 6.0 (1999) The Math Works Inc., Natick, Massachusetts, USA

  30. Caballero RD, Carda-Broch S, García-Álvarez-Coque MC (2001) Anal Letters 34:1189–1203

    Article  CAS  Google Scholar 

  31. Connors KA (1987) Binding Constants: The Measurement of Molecular Complex Stability. John Wiley and Sons, New York

    Google Scholar 

  32. Scatchard G (1949) Ann NY Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  33. Martens H, Naes T (1989) Multivariate Calibration. Willey, Chichester

    Google Scholar 

  34. Haaland DM, Thomas EV (1998) Anal Chem 60:1193–1202

    Article  Google Scholar 

  35. Ferré J, Faber NM (2003) Chemom Intell Lab Syst 69:123–136

    Article  Google Scholar 

  36. Muñoz de la Peña A, Salinas F, Durán-Merás I, Moreno MD (1994) Anal Letters 27:1893–1906

    Google Scholar 

  37. Wormser GP (1978) NY State J Med 78:1915

    CAS  Google Scholar 

  38. Berzas Nevado JJ, Lemus Gallego JM, Castañeda Peñalvo G (xxxx) Fresenius J Anal Chem 342:723

  39. Drayton CJ (1990) Comprehensive Medicinal Chemistry. Pergamon, Oxford, pp. 6

    Google Scholar 

  40. Caballero RD, Torres-Lapasió JR, Baeza-Baeza JJ, García-Alvarez-Coque MC (2001) J Liq Chrom Rel Technol 24:117–131

    Article  CAS  Google Scholar 

  41. Clayton CA, Hines JW, Elkins PD (1987) Anal Chem 59:2506–2514

    Article  CAS  Google Scholar 

  42. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the Consejería de Infraestructuras y Desarrollo Tecnológico de la Junta de Extremadura and Fondos Feder (Project 2PR04A007) is greatly acknowledged. Diego Bohoyo Gil is grateful to the Consejería de Educación, Ciencia y Tecnología de la Junta de Extremadura for a fellowship (DOE 21/06/01). The authors are grateful to Diego Airado Rodríguez for his help in the validation of the proposed procedure by the liquid chromatographic method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mora Diez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diez, N.M., de la Peña, A.M., García, M.C.M. et al. Fluorimetric Determination of Sulphaguanidine and Sulphamethoxazole by Host-Guest Complexation in β-Cyclodextrin and Partial Least Squares Calibration. J Fluoresc 17, 309–318 (2007). https://doi.org/10.1007/s10895-007-0174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0174-4

Keywords

Navigation