Journal of Fluorescence

, Volume 17, Issue 3, pp 309–318 | Cite as

Fluorimetric Determination of Sulphaguanidine and Sulphamethoxazole by Host-Guest Complexation in β-Cyclodextrin and Partial Least Squares Calibration

  • N. Mora Diez
  • A. Muñoz de la Peña
  • M. C. Mahedero García
  • D. Bohoyo Gil
  • F. Cañada-Cañada
Original Paper


The host-guest inclusion complexes of sulphamethoxazole (SMTX) and sulphaguanidine (SGN) with β-cyclodextrin, in aqueous solutions, have been investigated. A 1:1 stoichiometry of the complexes was established, the association constants were calculated by different methods, and the influence of several chemical variables on the complexation processes were established. According to the results obtained, a spectrofluorimetric method for the determination of these sulphonamides has been proposed. The individual and binary mixtures of both sulphonamides have been determined in human urine samples, at representative therapeutic ranges, by application of a first-order multivariate calibration partial least squares (PLS-1) model. The calibration set was designed with 9 samples, containing different concentrations of the two sulphonamides, and 8 blank urine samples, with the aim of modelling the variability of the background. The concentration ranges for the sulphonamides were up to 0.5 μg mL−1 for SMTX and 1.0 μg mL−1 for SGN. Figures of merit as selectivity, analytical sensitivity and limit of detection (LOD) were also calculated. The proposed procedure was validated by comparing the obtained results with a HPLC method, with satisfactory results for the assayed method.


Sulphamethoxazole Sulphaguanidine β-cyclodextrin Fluorimetric determination Partial least squares Urine 



Financial support provided by the Consejería de Infraestructuras y Desarrollo Tecnológico de la Junta de Extremadura and Fondos Feder (Project 2PR04A007) is greatly acknowledged. Diego Bohoyo Gil is grateful to the Consejería de Educación, Ciencia y Tecnología de la Junta de Extremadura for a fellowship (DOE 21/06/01). The authors are grateful to Diego Airado Rodríguez for his help in the validation of the proposed procedure by the liquid chromatographic method.


  1. 1.
    Marek J et al (1998) Farmakoterapie vnitrnich nemoci (Pharmacotherapy of Internal Diseases). Grada Publishing, Prague, pp. 159Google Scholar
  2. 2.
    Esteve-Romero J, Carda-Broch S, Gil-Agusti M, Capella-Peiro ME, Bose D (2005) Trends Anal Chem 24:75–91CrossRefGoogle Scholar
  3. 3.
    Msagati TAM, Nindi MM (2004) Talanta 64:87–100CrossRefGoogle Scholar
  4. 4.
    Bridges JW, Gifford LA, Hayes WP, Miller JN, Thorburn Burns D (1974) Anal Chem 46:1010–1017CrossRefGoogle Scholar
  5. 5.
    Sakano T, Amano T (1976) Yakugaku Zasshi 96:1114–1121PubMedGoogle Scholar
  6. 6.
    Sterling JM, Haney WG (1974) J Pharm Sci 63:1448–1450CrossRefPubMedGoogle Scholar
  7. 7.
    Arthur J, de Silva F, Strojny N (1975) Anal Chem 47:714–718CrossRefGoogle Scholar
  8. 8.
    Steward JT, Wilkin RE (1972) J Pharm Sci 61:432–433CrossRefGoogle Scholar
  9. 9.
    Sánchez Peña M, Salinas F, Mahedero MC, Aaron JJ (1992) J Pharm Biomed Anal 10:805–808CrossRefPubMedGoogle Scholar
  10. 10.
    Petz M (1987) J Chromatogr 423:217–225CrossRefPubMedGoogle Scholar
  11. 11.
    Schwaiger I, Schuch R (2000) Dtsch Lebebsm-Rundsch 96:93Google Scholar
  12. 12.
    Posyniak A, Sniegocki T, Zmudzki J (2002) Bull Vet Inst Pulawy 46:111Google Scholar
  13. 13.
    Martel AC, Zeggan S (2003) J Liq Chromatogr Rel Technol 26:953CrossRefGoogle Scholar
  14. 14.
    Pang GF, Cao YZ, Fan CL, Zhang JJ, Li XM, Li ZY, Jia GQ (2003) Anal Bioanal Chem 376:534CrossRefPubMedGoogle Scholar
  15. 15.
    Maudens E, Zhang G-F, Lambert WE (2004) J Chromatogr 1047:85–92CrossRefGoogle Scholar
  16. 16.
    Szejtli J (1982) Cyclodextrins and their Inclusion Complexes. Akademiai Kiado, BudapestGoogle Scholar
  17. 17.
    Scypinski S, Love JLC (1984) Anal Chem 56:331–336CrossRefGoogle Scholar
  18. 18.
    Muñoz de la Peña A, Ndou TT, Zung JB, Greene KL, Live DH, Warner IM (1991) J Am Chem Soc 113:1572–1577CrossRefGoogle Scholar
  19. 19.
    Muñoz de la Peña A, Durán Merás I, Salinas F, Warner IM, Ndou TT (1991) Anal Chim Acta 255:351–336CrossRefGoogle Scholar
  20. 20.
    Szente L, Szejtli J (1998) Analyst 123:735–741CrossRefGoogle Scholar
  21. 21.
    Okamoto H, Uetake A, Tamaya R, Nakajima T, Sagara K, Ito Y (2000) J Chromatogr A 888:299–308CrossRefPubMedGoogle Scholar
  22. 22.
    Bio. Rad Application Note (1999) 1575–45 2Google Scholar
  23. 23.
    Muñoz de la Pena A, Salinas F, Duran-Meras I, Dolores Moreno M (1994) Anal Lett 27:1893Google Scholar
  24. 24.
    Forina M, Casolino MC, De la Pezuela Martínez C (1998) J Pharma Biomed Anal 18:21–33CrossRefGoogle Scholar
  25. 25.
    Salmain M, Varenne A, Vessieres A, Jaouen G (1998) Appl Spectrosc 52:1383–1390CrossRefGoogle Scholar
  26. 26.
    Espinosa-Mansilla A, Acedo-Valenzuela MI, Muñoz de la Peña A, Salinas F, Cañada-Cañada F (2001) Anal Chim Acta 427:129–136CrossRefGoogle Scholar
  27. 27.
    Wold S, Martens H, Wold H (1983) In: Rube A, Kagstrom B (eds.) The Multivariate Calibration Problem in Chemistry Solved by PLS: Matrix Pencils (in the series, lecture notes in mathematics) Springer, Heidelber, pp. 286Google Scholar
  28. 28.
    Goicoechea HC, Iñon FA, Olivieri AC (2004) Chem Intell Lab Syst 73:189–197CrossRefGoogle Scholar
  29. 29.
    MATLAB 6.0 (1999) The Math Works Inc., Natick, Massachusetts, USAGoogle Scholar
  30. 30.
    Caballero RD, Carda-Broch S, García-Álvarez-Coque MC (2001) Anal Letters 34:1189–1203CrossRefGoogle Scholar
  31. 31.
    Connors KA (1987) Binding Constants: The Measurement of Molecular Complex Stability. John Wiley and Sons, New YorkGoogle Scholar
  32. 32.
    Scatchard G (1949) Ann NY Acad Sci 51:660–672CrossRefGoogle Scholar
  33. 33.
    Martens H, Naes T (1989) Multivariate Calibration. Willey, ChichesterGoogle Scholar
  34. 34.
    Haaland DM, Thomas EV (1998) Anal Chem 60:1193–1202CrossRefGoogle Scholar
  35. 35.
    Ferré J, Faber NM (2003) Chemom Intell Lab Syst 69:123–136CrossRefGoogle Scholar
  36. 36.
    Muñoz de la Peña A, Salinas F, Durán-Merás I, Moreno MD (1994) Anal Letters 27:1893–1906Google Scholar
  37. 37.
    Wormser GP (1978) NY State J Med 78:1915Google Scholar
  38. 38.
    Berzas Nevado JJ, Lemus Gallego JM, Castañeda Peñalvo G (xxxx) Fresenius J Anal Chem 342:723Google Scholar
  39. 39.
    Drayton CJ (1990) Comprehensive Medicinal Chemistry. Pergamon, Oxford, pp. 6Google Scholar
  40. 40.
    Caballero RD, Torres-Lapasió JR, Baeza-Baeza JJ, García-Alvarez-Coque MC (2001) J Liq Chrom Rel Technol 24:117–131CrossRefGoogle Scholar
  41. 41.
    Clayton CA, Hines JW, Elkins PD (1987) Anal Chem 59:2506–2514CrossRefGoogle Scholar
  42. 42.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • N. Mora Diez
    • 1
  • A. Muñoz de la Peña
    • 1
  • M. C. Mahedero García
    • 1
  • D. Bohoyo Gil
    • 1
  • F. Cañada-Cañada
    • 1
  1. 1.Department of Analytical ChemistryFaculty of Sciences, University of ExtremaduraBadajozSpain

Personalised recommendations