Advertisement

Journal of Fluorescence

, Volume 16, Issue 5, pp 631–639 | Cite as

Spectrophotometric Characteristics of New Pyridylindolizine Derivatives Solutions

  • Marilena Vasilescu
  • Rodica Bandula
  • F. Dumitrascu
  • H. Lemmetyinen
Original Paper

Abstract

Three new pyridylindolizine derivatives, 1, 2, 3-tricarbometoxi-7-(4-pyridyl)-pyrrolo[1, 2-a]pyridine (I), 1,2-dicarboethoxy-3-(4-bromobenzoyl)-7-(4-pyridyl)-pyrrolo[1,2-a]pyridine (II) and its isomer 1,2-dicarboethoxy-3- (4-bromobenzoyl) -5- (2-pyridyl) -pyrrolo[1, 2-a]pyridine (III) have been investigated in different solutions by UV-VIS absorption, steady-state, and time-resolved fluorescence methods. The effects of the substituent and solvent on the spectroscopic properties have been demonstrated. The fluorescence decay data could be fitted to a single-exponential function. The lifetime values are higher in protic polar than in aprotic apolar solvents for compound I. In the case of compounds II and III the fluorescence intensities and lifetimes are very low, with the exception of III in aprotic solvents. The absorption and fluorescence properties of the compounds showed a solvent dependence.

Keywords

5-(2-pyridyl)indolizines 7-(4-pyridyl)indolizines Fluorescence Fluorescence lifetime 

References

  1. 1.
    Vasilescu M, Dumitrascu F, Lemmetyinen H, Tkachenko N (2004) Steady-state and time-resolved spectroscopic characteristics of mesoionic oxazolones solutions. J Fluorescence 14:443CrossRefGoogle Scholar
  2. 2.
    Adler TK (1962) Fluorescence properties of mono-and polyazaindoles. Anal Chem 34:685CrossRefGoogle Scholar
  3. 3.
    Birks JB, Cameron AJW (1959) Crystal fluorescence of carginogens and related organic compounds. Proc Roy Soc (London) Ser A 249:297–317Google Scholar
  4. 4.
    Ungureanu M, Mangalagiu I, Grosu G, Petrovanu M (1997) Antimicrobial activity of some new pyridazine derivatives. Ann Pharm Fr 55(2):69PubMedGoogle Scholar
  5. 5.
    Nassir AI, Gundersen L-L, Rise F, Antonsen Ø, Kristensen T, Langhelle B, Bast A, Custers I, Haenen GRMM, Wikström H (1998) Inhibition of lipid peroxidation mediated by indolizines. Bioorg Med Chem Lett 8:1829CrossRefGoogle Scholar
  6. 6.
    stby OB, Dalhus B, Gundersen L-L, Rise F, Bast A, Haenen GRMM (2000) Synthesis of 1-substituted 7-cyano-2,3-diphenylindolizines and evaluation of antioxidant properties. Eur J Org Chem 9:3763CrossRefGoogle Scholar
  7. 7.
    Ohtani M, Fuji M, Fukui Y, Adachi M (2000) World Patent WO 9959999 A1, 25 November 1999; Chem Abstr 132:12318Google Scholar
  8. 8.
    stby OB, Gundersen L-L, Rise F, Antonsen Ø, Fosnes K, Larsen V, Bast A, Custers I, Haenen GRMM (2001) Synthesis of 5-substituted pyrrolo[1,2-b]pyridazines with antioxidant properties. Arch Pharm Pharm Med Chem 334:21CrossRefGoogle Scholar
  9. 9.
    Pal M, Batchu VR, Khanna S, Yeleswarapu KR (2002) Regioselective aluminium chloride induced heteroarylation of pyrrolo[1,2-b]pyridazines: its scope and application. Tetrahedron, 58:9933CrossRefGoogle Scholar
  10. 10.
    Cheng Y, Ma B, Wudl F (1999) Synthesis and optical properties of a series of pyrrolopyridazine derivatives: deep blue organic luminophors for electroluminescent devices. J Mater Chem 9, 2183CrossRefGoogle Scholar
  11. 11.
    Mitsumori T, Bendikov M, Sedó J, Wudl F (2003) Synthesis and properties of novel highly fluorescent pyrrolopyridazine derivatives. Chem Mater 15:3759CrossRefGoogle Scholar
  12. 12.
    Simionyan VV, Zinin A, Babaev E, Jug K (1998) Mechanism of cycloaddition to indolizines. J Phys Org Chem 11:201CrossRefGoogle Scholar
  13. 13.
    Flitsch W (1984) In Comp. Heterocycl. Chem. Katrizky AR, Rees CW (eds), vol. 4, p. 443, Pergamon Press, OxfordGoogle Scholar
  14. 14.
    Takahata H, Momose T (1993) in The Alkaloids, GS Cordell (Ed), vol. 44, Chapter 3, Academic Press, Inc, San DiegoGoogle Scholar
  15. 15.
    Rotaru A, Druta I, Oeser T, Müller Th (2005) A novel coupling 1,3-dipolar cycloaddition sequence as a three-component approach to highly fluorescent indolizines. Helv Chim Acta, 88:1798CrossRefGoogle Scholar
  16. 16.
    Delattre F, Woisel P, Surpateanu G, Bria MG, Cazier F, Decock P (2004) 1,3-Dipolar cycloaddition reaction of bipyridinium ylides with the propynamido-β-cyclodextrin. A regiospecific synthesis of a new class of fluorescent β-cyclodextrins. Tetrahedron: 60:1557–1562CrossRefGoogle Scholar
  17. 17.
    Landy D, Surpateanu GG, Fourmantin S, Blach P, Decock P, Suptateanu G (2005) On the inclusion ability of a fluorinated fluorescent indolizine β–cyclodextrin sensor towards volatile organic compounds. Internet Electron J Mol Des. 4:545–555Google Scholar
  18. 18.
    Vlahovici Al, Druta I, Andrei M, Cotlet M, Dinica R (1999) Photophysics of some indolizines, derivatives from bipyridyl, in various media. J Luminescence 82:155–162CrossRefGoogle Scholar
  19. 19.
    Druta II, Andrei MA, Aburel PS (1998) Synthesis of 5-(2′-pyridyl)-indolizines by the reaction of 2-(2′-pyridyl)-pyridinium-ylides with activated alkynes. Tetrahedron 54:2107CrossRefGoogle Scholar
  20. 20.
    Druta II, Dinca RM, Bacu E, Humelnicu I (1998) Synthesis of 7,7′-bisindolizines by the reaction of 4,4′-bipyridinium-ylides with activated alkynes. Tetrahedron 54:10811CrossRefGoogle Scholar
  21. 21.
    Zugravescu I, Petrovanu M (1976) N-Ylid-chemistry. Mc Graw Hill, LondonGoogle Scholar
  22. 22.
    Dumitrascu F, Mitan CI, Draghici C, Caproiu MT, Raileanu D, (2001) Primary cycloadducts of 1,10-phenanthrolinium and phthalazinium phenacylides with DMAD. Tetrahedron Lett 42:8379CrossRefGoogle Scholar
  23. 23.
    Calder IC, Sasse WHF (1968) The synthesis of 1-acylmethyl-2-(2-pyridyl)pyridinium salts and their cyclization to 6-substituted dipyrido[1,2-c:2′,1′-e]imidazolium salts. Aust J Chem 21:1023CrossRefGoogle Scholar
  24. 24.
    Melhuish WH (1961) Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute. J Phys Chem 65:229; Melhuish WH (1964) Measurement of quantum efficiencies of fluorescence and phosphorescence and some suggested luminescence standards. J Opt Soc Am 54:183–188Google Scholar
  25. 25.
    Caldararu H, Caragheorgheopol A, Vasilescu M, Dragutan I, Lemmetyinen H (1994) Structure of the polar core in reverse micelles of nonionic poly(oxyethylene) surfactants, as studied by spin and fluorescence probe techniques. J Phys Chem B 98:5320CrossRefGoogle Scholar
  26. 26.
    Caira M, Dumitrascu F, Draghici C, Dumitrescu D, Cristea M (2005) Synthesis and X-ray structure of a new pyrrolo[1,2-b]-pyridazine derivative. Molecules 10:360–366CrossRefPubMedGoogle Scholar
  27. 27.
    Yufit DS, Struchkov YuT, Propstakov NS, Kuznetsov VI (1986) Crystal and molecular structure of 6-methyl-2,7-diphenyl-1,3-diformylindolizine. Chem Heterocyclic Compounds 22(8):844–848CrossRefGoogle Scholar
  28. 28.
    Peng W, Zhu S (2001) Reactions of N-benzyl-pyridinium or–isoquinolinium ylides with ethyl 3-fluoro-3-(fluoroalkyl)acrylates to give fluoroalkyl-substituted indolizine and pyrrolo[2,1-a]isoquinoline derivatives. J Chem Soc, Perkin Trans 1:3204–3210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Marilena Vasilescu
    • 1
  • Rodica Bandula
    • 1
  • F. Dumitrascu
    • 2
  • H. Lemmetyinen
    • 3
  1. 1.Institute of Physical ChemistryRomanian Academy, Splaiul Independentei 202BucharestRomania
  2. 2.Centre of Organic ChemistryRomanian Academy, Splaiul Independentei 202BucharestRomania
  3. 3.Institute of Materials ChemistryTampere University of TechnologyTampereFinland

Personalised recommendations