Advertisement

Journal of Fluorescence

, Volume 16, Issue 6, pp 817–823 | Cite as

Influence of Freezing and Low Molecular Weight Cryoprotectants on Microsomal Membrane Structure: A Study by Multiparametric Fluorescent Probe

  • Tatyana S. Dyubko
  • Elena V. Onishchenko
  • Vasyl G. Pivovarenko
Original Paper

Abstract

The influence of low molecular weight cryoprotectants (CPs) such as glycerol (GL), 1,2-propanediol (PD) and dimethylsulfoxide (DMSO) on the structure of rat liver microsomal membranes on the stages of equilibration and upon freezing up to −196°C was studied using a multiparametric fluorescent probe of flavonol nature. It was estimated that the studied CPs have individual concentration ranges defining low amplitude of their action on biomembranes. An exceeding of these ranges strongly increases the violation of membrane native structure already at the stage of incubation with CPs, strengthening it during the freezing procedure. According to the perturbation effect on microsomal membranes the studied CPs can be arranged in a sequence: DMSO > PD > GL.

Keywords

Microsomes Cryoprotectants Glycerol 1,2-propanediol Dimethylsulfoxide Freezing Fluorescent probe 3-hydroxyflavone Flavonol Fluorescence 

References

  1. 1.
    Tsytsaeva AA, Agranenko VA, Fedorova LI et al (1983) In: Tsytsaeva AA (ed) Cryoconservation of cell suspensions. Naukova Dymka, Kiev, p 240 (in Russian)Google Scholar
  2. 2.
    Belous AM, Bondarenko VA (1982) Structural changes of biomembranes when cooling. Naukova Dumka, Kiev, p 255 (in Russian)Google Scholar
  3. 3.
    Zhegunov GF (1979) Freeze-thawing and CP influence on structural and functional state of Ca2+—transporyting system of sarcoplasmic reticulum membranes. PhD thesis, Kharkov (in Russian)Google Scholar
  4. 4.
    Farrant J (1964) Pharmacological actions and toxicity of DMSO and other compounds protect smooth muscle during freezing and thawing. Pharm Pharmacol 16(6):472–478Google Scholar
  5. 5.
    Gulevskij AK, Bondarenko VA, Beloys AM (1988) Biomembrane barrier properties at low temperatures. Naukova Dymka, Kiev, p 208 (in Russian)Google Scholar
  6. 6.
    Crowe JN, Crowe LM, Carpenter JE et al (1988) Interactions of sugar with membranes. Biochem Biophys Acta 947:367–384PubMedGoogle Scholar
  7. 7.
    Kralicz U, Surrevitcz W, Kotelba-Witkovska B, Pietrusha T (1984) Effect of dimethyl sulfoxide on plasma membrane of human platelets. Stud Biophys 100(1):33–40Google Scholar
  8. 8.
    Boss WF, Moff RL (1980) Effect of divalent cations and polyethylene glycol on the membrane fluidity of protoplast. Plant Physiol 66(5):835–837PubMedGoogle Scholar
  9. 9.
    Moiseyev VA (1984) Molecular mechanisms of cryodamages and cryoprotection of proteins and biomembranes. Doctoral Science thesis, Kharkov (in Russian)Google Scholar
  10. 10.
    Chekurova NR, Kislov AN, Veprintsev BN (1987) The effect of some cryoprotectants on ion channeles of neurone membranes. Kriobiologiya 1:21–25 (in Russian)Google Scholar
  11. 11.
    Rudenko SV, Belitser NV, Chernishow VI et al (1985) Liposomes structure and lipids lamellar packing modification at interaction with glycerol. Tsitologia i Genetika 19(6):412–415 (in Russian)Google Scholar
  12. 12.
    Dobretsov GE (1989) Fluorescence probes in cell, membrane and lipoprotein investigations. Nauka, Moscow, p 277 (in Russian)Google Scholar
  13. 13.
    Lakowicz JR (1999) Principles of Fluorescence Spectroscopy, 2ndedn. Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, p 698Google Scholar
  14. 14.
    Ercelen S, Klymchenko AS, Demchenko AP (2003) Novel two-color fluorescence probe with extreme specifity to bovine serum albumin. FEBS Lett 538:25–28PubMedCrossRefGoogle Scholar
  15. 15.
    Ercelen S, Klymchenko AS, Demchenko AP (2002) Ultrasensitive fluorescent probe for the hydrophobic range of solvent polarities. Anal Chim Acta 464:273–287CrossRefGoogle Scholar
  16. 16.
    Demchenko AP, Klymchenko AS, Pivovarenko VG, Ercelen S (2002) Fluorescence spectroscopy imaging and probes. In: Kraayenhof R, Visser AJWG, Gerritsen HC (eds) New tools in chemical, physical and life sciences. Springer-Verlag, Heidelberg, pp 101–110Google Scholar
  17. 17.
    Sengupta PK, Kasha M (1979) Excited state proton-transfer spectroscopy of 3-hydroxyflavone and quercetin. Chem Phys Lett 68(2–3):382–385CrossRefGoogle Scholar
  18. 18.
    Chou P-T, Martinez ML, Clements J-H (1993) Reversal of excitation behavior of proton-transfer vs. charge-transfer by dielectric perturbation of electronic manifolds. J Phys Chem 97(11):2618–2622CrossRefGoogle Scholar
  19. 19.
    Klymchenko AS, Ozturk T, Pivovarenko VG, Demchenko AP (2001) A new 3-hydroxychromone with dramatically improved fluorescence properties. Tetrahedron Lett 42:7967–7970CrossRefGoogle Scholar
  20. 20.
    Klymchenko AS, Pivovarenko VG, Ozturk T, Demchenko AP (2003) Modulation of the solvent-dependent dual emission in 3-hydroxychromones by substituents. New J Chem 27:1336–1343CrossRefGoogle Scholar
  21. 21.
    Pivovarenko VG, Tuganova AV, Klymchenko AS, Demchenko AP (1997) Flavonols as models for fluorescent membrane probes. 1. The response to the charge of micelles. Cell Mol Biol Lett 2:355–364Google Scholar
  22. 22.
    Sebnem E, Klymchenko AS, Demchenko AP (2002) An ultrasensitive fluorescent probe for hydrophobic range of solvent polarities. Anal Chim Acta 464:273–287CrossRefGoogle Scholar
  23. 23.
    Klymchenko AS, Demchenko AP (2003) Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. J Phys Chem 5:461–468CrossRefGoogle Scholar
  24. 24.
    Ercelen S, Klymchenko AS, Demchenko AP (2003) Novel two-color fluorescence probe with extreme specificity to bovine serum albumin. FEBS Lett 538:25–28PubMedCrossRefGoogle Scholar
  25. 25.
    Pivovarenko VG (2003) Design of fluorescent probes on the basis of 3-hydroxychromones and their analogs. Ukr Bioorg Acta 1:40–49 (in Ukrainian)Google Scholar
  26. 26.
    Klymchenko AS, Pivovarenko VG, Demchenko AP (2003) Elimination of hydrogen bonding effect on the solvatochromism of 3-hydroxyflavones. J Phys Chem 107:4211–4216Google Scholar
  27. 27.
    Bondar OP, Pivovarenko VG, Rowe ES (1998) Flavonols—new fluorescent membrane probes for studying the interdigitation of lipid bilayers. Biochim Biophys Acta 1369(1):119–130PubMedCrossRefGoogle Scholar
  28. 28.
    Klymchenko A, Duportail G, Ozturk T, Pivovarenko V, Mély Y, Demchenko A (2002) Novel two-band ratiometric fluorescence probes with different location and orientation in phospholipid membranes. Chem Biol 9:1199–1208PubMedCrossRefGoogle Scholar
  29. 29.
    Duportail G, Klymchenko AS, Mely Y, Demchenko AP (2001) Neutral fluorescence probe with strong ratiometric response to surface charge of phospholipid membranes. FEBS Lett 508(2):196–200PubMedCrossRefGoogle Scholar
  30. 30.
    Duportail G, Klymchenko A, Mely Y, Demchenko AP (2002) On the coupling between surface charge and hydration in biomembranes. Experiments with 3-hydroxyflavone probes. J Fluores 12(2):181–185CrossRefGoogle Scholar
  31. 31.
    Klymchenko S, Duportail G, Mely Y, Demchenko AP (2003) Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes. Proc Nat Acad Sci USA 100(20):11219–11224PubMedCrossRefGoogle Scholar
  32. 32.
    Smith MA, Neumann RM, Webb RA (1968) A modification of the Algar-Flynn-Oyamada preparation of flavonols. J Heterocycl Chem 5:425–426CrossRefGoogle Scholar
  33. 33.
    Vaisberg A, Proskauer E, Roddik D, Typs E (1968) Organic solvents. Khimiya, Moscow, p 1450 (in Russian)Google Scholar
  34. 34.
    Protiva M (1966) Purification of solvents. In: Laboratory equipment of organic chemistry. Mir, Moscow, pp 591–615 (in Russian)Google Scholar
  35. 35.
    Dehlinger PJ, Schimke RT (1971) Size distribution of membrane proteins of rat liver and their relative rates of degradation. J Biol Chem 246(8):2574–2583PubMedGoogle Scholar
  36. 36.
    Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurrement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  37. 37.
    Bondar OP, Pivovarenko VG, Rowe ES (1998) Flavonols—new fluorescent membrane probes for studying the interdigitation of lipid bilayers. Biochim Biophys Acta 1369(1):119–130PubMedCrossRefGoogle Scholar
  38. 38.
    Klymchenko AS, Duportail G, Demchenko AP, Mely Y (2004) Bimodal distribution and fluorescence response of environment-sensitive probes in lipid bilayers. Biophys J 86:2929–2941PubMedGoogle Scholar
  39. 39.
    Stier A, Sackmann E (1978) Spin label as enzyme substrates heterogeneous lipid disrtribution in liver microsomal membranes. Biochim et Biophys Acta 311:400–408Google Scholar
  40. 40.
    Archakov AI (1975) Microsomal oxygenation. Nauka, Moscow, p 32 (in Russian)Google Scholar
  41. 41.
    Pichugin Yu I, Novikov AN, Oleinik ST (1984) The lyotropic range of cryoprotectants. Kriobiologiya 7:12–13 (in Russian)Google Scholar
  42. 42.
    Novikov AP, Kuleshova LG, Linnik TP (1991) The mechanism of ice crystals growth in model systems. Biofizika 36(1):122–127 (in Russian)Google Scholar
  43. 43.
    Klymchenko AS, Duportail G, Ozturk T, Pivovarenko VG, Mely Y, Demchenko AP (2002) Novel two-band ratiometric fluorescence probes with different location and orientation in phospholipid membranes. Chem Biol 9:1199–1208PubMedCrossRefGoogle Scholar
  44. 44.
    Moissev VA, Zinchenko VD, Nardid OA (1991) About some molecular mechanisms of bioobject cryopreservation. Physical and chemical processes in cryobiological systems. Kharkov 78–92 (in Russian)Google Scholar
  45. 45.
    Gulevsky AK, Nardid OA (1987) The investigation of permeability of erythrocyte membranes frozen-thawed in media of non-permeable and permeable cryoprotectant. Kriobiologiya 3:15–19 (in Russian)Google Scholar
  46. 46.
    Pivovarenko VG, Wróblewska A, Błazejowski J (2004) The effect of hydrogen bonding interactions between 2-[4-(dimethylamino)phenyl]-3-hydroxy-4H-chromene-4-one in the ground and excited states and dimethylsulfoxide or methanol on electronic absorption and emission transitions. J Mol Struct 708:175–181Google Scholar
  47. 47.
    Klymchenko S, Demchenko AP (2003) Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys Chem Chem Phys 5:461–468CrossRefGoogle Scholar
  48. 48.
    Onishchenko EV, Dyubko TS, Zinchenko AV (2004) Spectrophotometrical researches of some penetrating cryoprotectants influence on microsomal proteins. Biophys Bull 1–2:105–111 (in Russian)Google Scholar
  49. 49.
    Belous AM, Grishchenko VI (1994) Cryobiology. Naukova Dumka, Kiev, p 431 (in Russian)Google Scholar
  50. 50.
    Petropavlov NN (1998) Cryoprotectant dimethylsulfoxide. In: Conservation of genetic resources, Materials of the XV workshop. Inst. Biol. Phys. Cell, RAS, Pushchino 116–117 (in Russian)Google Scholar
  51. 51.
    Markovskij AL (1984) Cryoconservation factor influence on the hydratation of globular proteins. PhD thesis, Kharkov (in Russian)Google Scholar
  52. 52.
    Gavrilova I (1982) Study of low temperature and cryoprotectant influence on structural conformational transitions in some proteins ans erythrocytes membranes: PhD thesis, Kharkov, p 146 (in Russian)Google Scholar
  53. 53.
    Nardid OA, Dyubko TS (1987) Spectroscopy of combined light scattering in cryobiology. Kriobiologiya 4:3–9 (in Russian)Google Scholar
  54. 54.
    Yu ZW, Quinn PJ (1998) The modulation of membrane structure and stability by dimethyl sulphoxide (review). Mol Memb Biol 15:59–68Google Scholar
  55. 55.
    Chuyko VA (1989) The mechanism of cryoprotective efficiency and pharmacologic properties of DMSO. Kriobiologiya 1:3–10 (in Russian)Google Scholar
  56. 56.
    Yu ZW, Quinn PJ (1995) Phase-stability of phosphatidylcholines in dimethylsulfoxide solutions. Biophys J 69:1456–1463PubMedCrossRefGoogle Scholar
  57. 57.
    Wood DC, Wood J (1975) Pharmacologic and biochemical considerations of dimethyl sulfoxide. Ann NY Acad Sci 243:7–19PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Tatyana S. Dyubko
    • 1
  • Elena V. Onishchenko
    • 1
  • Vasyl G. Pivovarenko
    • 2
  1. 1.Institute for Problems of Cryobiology and CryomedicineUkrainian National Academy of SciencesKharkovUkraine
  2. 2.National Taras Shevchenko University of KyivKyivUkraine

Personalised recommendations