Journal of Fluorescence

, Volume 15, Issue 4, pp 585–595 | Cite as

Luminescent Eu(III) and Tb(III) Complexes: Developing Lanthanide Luminescent-Based Devices

  • Joseph P. Leonard
  • Thorfinnur Gunnlaugsson


This mini review gives some highlights of the work recently carried out in our research group in Dublin on the developments of lanthanide luminescent devices, where the future goal is to produce devices that can operate as sensors. A few examples demonstrate our design principles for targeting both anion and cations that are of biological or pharmaceutical relevance, where the recognition occurs in aqueous competitive media. We also discuss the possibility of developing mixed f-d metal complexes and conjugates that can be employed as novel supramolecular architectures.


Lanthanide luminescence Eu(III) Tb(III) sensing recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    (a) T. Gunnlaugsson and J. P. Leonard (2005). Responisver lanthanide luminescent cyclen complexes: from switching/sensing to supramolecular architectures. Chem. Commun. 3114–3131; (b) T. Gunnlaugsson, H. D. P. Ali, M. Glynn, P. E. Kruger, G. M. Hussey, F. M. Pfeffer, C. M. G. dos Santos, and J. Tierney (2005). Flourescnet Photoinduced Electron Transfer (PET) sensors for anions: from design to potential application. J. Fluoresc. 15, 287–299.Google Scholar
  2. 2.
    (a) V. Balzani, A. Credi, F. M. Raymo, and J. F. Stoddart (2000). Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391; (b) V. Bermudez, N. Capron, T. Gase, F. G. Gatti, F. Kajzar, D. A. Leigh, F. Zerbetto, and S. Zhang (2000). Influencing Submolecular Motion with an Alternating Electric Field. Nature 406, 608–611; (c) V. Balzani, M. Gómez-López, and J. F. Stoddart (1998). Molecular machines. Acc. Chem. Res. 31, 405–414; (d) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice (1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 97, 1515–1566. (e) P. R. Ashton, V. Balzani, J. Becher, A. Credi, M. C. T. Fyfe, G. Mattersteig, S. Menzer, M. B. Nielsen, F. M. Raymo, J. F. Stoddart, M. Venturi, and D. J. Williams (1999). A Three-Pole Supramolecular Switch. J. Am. Chem. Soc. 121, 3951–3957; (f) S. Zahn and J. W. Canary (1998). Redox-Switched Exciton-Coupled Circular Dichroism: A Novel Strategy for Binary Molecular Switching. Angew. Chem., Int. Ed. 37, 305–307; (g) M. C. T. Fyfe and J. F. Stoddart (1997). Synthetic Supramolecular Chemistry. Acc. Chem. Res. 30, 393–401.Google Scholar
  3. 3.
    R. P. Haugland (2001). Handbook of Fluorescent Probes and Research Products, (8th ed), Molecular Probes.Google Scholar
  4. 4.
    H. He, M. A. Mortellaro, M. J. P. Leiner, S. T. Young, R. J. Fraatz, and J. K. Tusa (2003). A Fluorescent Chemosensor for Sodium Based on Photoinduced Electron Transfer. Anal. Chem. 75, 549–555.CrossRefPubMedGoogle Scholar
  5. 5.
    F. S. Richardson (1982). Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems. Chem. Rev. 82, 541–552.CrossRefGoogle Scholar
  6. 6.
    F. S. Richardson and A. D. Gupta (1981). Spectroscopic studies on the interaction of the antibiotic lasalocid A (X537A) with lanthanide(III) ions in methanol. J. Am. Chem. Soc. 103, 5716–5725.CrossRefGoogle Scholar
  7. 7.
    H. G. Brittain, F. S. Richardson, and R. B. Martin (1976). Terbium (III) emission as a probe of calcium(II) binding sites in proteins. J. Am. Chem. Soc. 25, 8255–8260.CrossRefGoogle Scholar
  8. 8.
    (a) D. Parker, R. S. Dickins, H. Puschmann, C. Crossland, and J. A. K. Howard (2002). Being Excited by Lanthanide Coordination Complexes: Aqua Species, Chirality, Excited-State Chemistry, and Exchange Dynamics. Chem. Rev. 102, 1977–2010; (b) D. Parker, J. A. G. Williams (1996). Getting excited about lanthanide complexation chemistry. J. Chem. Soc., Dalton Trans. 18, 3613–3628.Google Scholar
  9. 9.
    N. Sabbatini, M. Guardigili, and J.-M. Lehn (1993). Luminescent lanthanide complexes as photochemical supramolecular devices. Coord. Chem. Rev. 123, 201–228.CrossRefGoogle Scholar
  10. 10.
    P. G. Sammes and G. Yahioglu (1996). Modern bioassays using metal chelates as luminescent probes. Natural Product Reports 13, 1–28.CrossRefPubMedGoogle Scholar
  11. 11.
    D. Parker (2000). Luminescent lanthanide sensors for pH, pO2 and selected anions, Coord. Chem. Rev. 205, 109–130.CrossRefGoogle Scholar
  12. 12.
    A. E. Merbach and E. Toth (2001) The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, Wiley & Sons.Google Scholar
  13. 13.
    D. L. Dexter (1953). A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850.CrossRefGoogle Scholar
  14. 14.
    T. H. Forster (1959). Transfer Mechanisms of Electronic Excitation. Discuss. Faraday Soc. 27, 7–17.CrossRefGoogle Scholar
  15. 15.
    J.-A. Yu, R. B. Lessard, L. E. Bowman, and D. G. Nocera (1991). Direct observation of intramolecular energy transfer from a β-diketonate to terbium (III) ion encapsulated in a cryptand. Chem. Phys. Lett. 187, 263–268.CrossRefGoogle Scholar
  16. 16.
    H. Tsukube, S. Shinoda, and H. Tamiaki (2002). Recognition and sensing of chiral biological substrates via lanthanide coordination chemistry. Coord. Chem. Rev. 226, 227–234.CrossRefGoogle Scholar
  17. 17.
    (a) A. P. de Silva, H. Q. Nimal Gunaratne, and T. E. Rice (1996). Proton-Controlled Switching of Luminescence in Lanthanide Complexes in Aqueous Solution: pH Sensors Based on Long-Lived Emission. Angew. Chem. Int. Ed. Engl. 3518, 2116–2118; (b) A. P. de Silva, H. Q. Nimal Gunaratne, T. E. Rice, and S. Stewart (1997). Switching on the luminescence of one metal ion with another: Selectivity characteristics with respect to the emitting and triggering metal. Chem. Commun. 1891–1892.Google Scholar
  18. 18.
    (a) T. Gunnlaugsson, A. P. Davis, J. E. O’Brien, and M. Glynn (2002). Fluorescent sensing of pyrophosphate and bis-carboxylates using charge neutral PET chemosensors. Organic Lett. 4, 2449–2452; (b) T. Gunnlaugsson, B. Bichell, and C. Nolan (2002). Novel fluorescent photoinduced electron transfer (PET) sensor for lithium. Tetrahedron Lett. 43, 4989–4992; (c) T. Gunnlaugsson, M. Nieuwenhuyzen, L. Richard, and V. Thoss (2002). Novel sodium-selective fluorescent PET and optically based chemosensors: towards Na+ determination in serum. J. Chem. Soc., Perkin Trans. 2(1), 141–150; (d) T. Gunnlaugsson and J. P. Leonard (2002). Synthesis and evaluation of colorimetric chemosensors for monitoring sodium and potassium in the intracellular concentration range. J. Chem. Soc., Perkin Trans. 2(12),1980–1985; (e) T. Gunnlaugsson, A. P. Davis, and M. Glynn (2001). Fluorescent photoinduced electron transfer (PET) sensing of anions using charge neutral chemosensors. Chem. Commun. 2556–2557.Google Scholar
  19. 19.
    (a) T. Gunnlaugsson, R. J. H. Davies, M. Nieuwenhuyzen, C. S. Stevenson, J. E. O’Brien, and S. Mulready (2003). Synthesis, structural and biological evaluation of GlyAla based lanthanide macrocyclic conjugates as supramolecular ribonuclease mimics. Polyhedron 22, 711–724; (b) T. Gunnlaugsson, R. J. H. Davies, M. Nieuwenhuyzen, C. S. Stevenson, R. Viguier, and S. Mulready (2002). Rapid hydrolytic cleavage of the mRNA model compound HPNP by glycine based macrocyclic lanthanide ribonuclease mimics. Chem. Commun. 2136–2137; (c) T. Gunnlaugsson, J. E. O’Brien, and S. Mulready (2002). Glycine-alanine conjugated macrocyclic lanthanide ion complexes as artificial ribonucleases. Tetrahedron Lett. 43, 8493–8497.Google Scholar
  20. 20.
    (a) T. Gunnlaugsson, A. P. Davis, J. E. O’ Brien, and M. Glynn (2005). Synthesis and photophysical evaluation of charge neutral thiourea or urea based fluorescent PET sensors for bis-carboxylates and pyrophosphates. Org. Biomol. Chem. 3, 48–56; (b) T. Gunnlaugsson, A. P. Davis, G. M. Hussey, J. Tierney, and M. Glynn (2004). Design, synthesis and photophysical studies of simple fluorescent anion PET sensors using charge neutral thiourea receptors. Org. Biomol. Chem. 2, 1856–1863.Google Scholar
  21. 21.
    T. Gunnlaugsson, T. C. Lee, and R. Parkesh (2004). Highly selective fluorescent chemosensors for cadmium in water. Tetrahedron 60, 11239–11249.Google Scholar
  22. 22.
    T. Gunnlaugsson, J. P. Leonard, and N. S. Murray (2004). Highly selective colorimetric naked-eye Cu(II) detection using an azobenzene chemosensor. Org. Lett. 6, 1557–1560.CrossRefPubMedGoogle Scholar
  23. 23.
    N. Sabbatini, S. Perathoner, G. Lattanzi, S. Dellonte, and V. Balzani (1987). Influence of fluoride ions on the absorption and luminescence properties of the [Eu.cntnd.2.2.1]3+ and [Tb.cntnd.2.2.1]3+ cryptates. J. Phys. Chem. 24, 6136–6139.CrossRefGoogle Scholar
  24. 24.
    T. Yamada, S. Shinoda, and H. Tskube (2002). Anion sensing with luminescent lanthanide complexes of tris(2-pyridylmethyl)amines: Pronounced effects of lanthanide center and ligand chirality on anion selectivity and sensitivity. Chem. Commun. 1218–1219.Google Scholar
  25. 25.
    (a) M. Montalti, L. Prodi, N. Zaccheroni, L.Charonniere, L. Douce, and R. Ziessel (2001). A Luminescent Anion Sensor Based on a Europium Hybrid Complex. J. Am. Chem. Soc. 123, 12694–12695; (b) L. J. Charbonniere, R. Ziessel, M. Monalti, L. Prodi, N. Zacheroni, C. Boehme, and G. Wipff (2002). Luminescent Lanthanide Complexes of a Bis-bypyridine-oxide Ligand as Tools for Anion Detection. J. Am. Chem. Soc. 124, 7779–7788.Google Scholar
  26. 26.
    (a) J. I. Bruce, R. S. Dickens, L. J. Govenlock, T. Gunnlaugsson, S. Lopinski, M. P. Lowe, D. Parker, R. D. Peacock, J. J. B. Perry, S. Aime, and M. Botta (2000). The Selectivity of Reversible Oxy-Anion Binding in Aqueous Solution at a Chiral Europium and Terbium Center: Signaling of Carbonate Chelation by Changes in the Form and Circular Polarization of Luminescence Emission. J. Am. Chem. Soc. 122, 9674–9684; (b) R. S. Dickins, T. Gunnlaugsson, D. Parker, and R. D. Peacock (1998). Reversible anion binding in aqueous solution at a cationic heptacoordinate lanthanide centre: Selective bicarbonate sensing by time-delayed luminescence. Chem. Commun. 1643–1644; (c) R. S. Dickins, C. S. Love, and H. Puschmann (2001). Bidentate lactate binding in aqueous solution in a cationic, heptadentate lanthanide complex: An effective chiral derivatising agent. Chem. Commun. 2308–2309.Google Scholar
  27. 27.
    S. L. Murov, I. Carmicheal, and G. L. Hug (1993). Handbook of Photochemistry, (2nd ed), Marcel Dekker, New York.Google Scholar
  28. 28.
    (a) T. Gunnlaugsson, J. P. Leonard, S. Mulready, and M. Nieuwenhuyzen (2004). Three step vs. one pot synthesis and X-ray crystallographic investigation of heptadentate triamide cyclen (1,4,7,10-tetraazacyclododecane) based ligands and some of their lanthanide ion complexes. Tetrahedron 60, 105–113; (b) T. Gunnlaugsson, A. J. Harte, J. P. Leonard, and M. Nieuwenhuyzen (2002). Delayed lanthanide luminescence sensing of aromatic carboxylates using heptadentate tri-amide Tb(III) cyclen complexes: The recognition of salicylic acid in water. Chem. Commun. 2134–2135; (c) T. Gunnlaugsson, A. J. Harte, J. P. Leonard, and M. Nieuwenhuyzen (2003). The formation of luminescent supramolecular ternary complexes in water: Delayed luminescence sensing of aromatic carboxylates using coordinated unsaturated cationic heptadentate lanthanide ion complexes. Supramol. Chem. 15, 505–519.Google Scholar
  29. 29.
    W. D. Horrocks, Jr., and D. R. Sundick (1981). Lanthanide ion luminescence probes of the structure of biological macromolecules. Acc. Chem. Res. 14, 384–392.CrossRefGoogle Scholar
  30. 30.
    S. W. Magennis, J. Craig, A. Gardner, F. Fucassi, P. J. Gragg, N. Robertson, S. Parson, and Z. Pikramenou (2003). Crown ether lanthanide complexes as building blocks for luminescent ternary complexes. Polyhedron 22, 745–754.CrossRefGoogle Scholar
  31. 31.
    C. Li and W.-T. Wong (2002). Luminescent terbium (III) complexes with pendant crown ethers responding to alkali metal ions and aromatic antennae in aqueous solution. Chem. Commun. 2034–2035.Google Scholar
  32. 32.
    C. Li and W.-T. Wong (2004). Luminescent heptadentate Tb3+ complex with pendant aza-15-crown-5 showing recognition of lactate and salicylate in aqueous solution. Tetrahedron Lett. 45, 6055–6058.CrossRefGoogle Scholar
  33. 33.
    T. Gunnlaugsson, J. P. Leonard, and C. Santos. Unpublished work.Google Scholar
  34. 34.
    T. Gunnlaugsson (2001). A novel Eu(III)-based luminescent chemosensor: Determining pH in a highly acidic environment. Tetrahedron Lett. 42, 8901–8905.CrossRefGoogle Scholar
  35. 35.
    a) T. Gunnlaugsson, D. A. Mac Donaill, and D. Parker (2001). Lanthanide Macrocyclic Quinolyl Conjugates as luminescent Molecular-Level Dedices. J. Am. Chem. Soc. 123, 12866–12876; (b) D. Parker, P. K. Senanayake, and J. A. G. Williams (1998). Luminescent sensors for pH, pO2, halide and hydroxide ions using phenanthradinde as a photosnesitiser in macrocyclic europium and terbium complexes. J. Chem. Soc., Perkin Trans. 2(10), 2129–2140.Google Scholar
  36. 36.
    T. Gunnlaugsson and J. P Leonard (2003). H+, Na+ and K+ modulated lanthanide luminescent switching of Tb(III) based cyclen aromatic diaza-crown ether conjugates in water. Chem. Commun. 2424–2425.Google Scholar
  37. 37.
    J. J. R. Frausto da Silva and R. J. P. Williams (1993). The Biological Chemistry of the Elements—The Inorganic Chemistry of Life, Oxford University Press, Oxford.Google Scholar
  38. 38.
    (a) O. Reany, T. Gunnlaugsson, and D. Parker (2000). Selective signaling of zinc ions by modulation of terbium luminescence. Chem. Commun. 473–474; (b) O. Reany, T. Gunnlaugsson, and D. Parker (2000). A model system using modulation of lanthanide luminescence to signal Zn2+ in competitive aqueous media. J. Chem. Soc., Perkin Trans. 2, 1819–1831.Google Scholar
  39. 39.
    T. Gunnlaugsson, J. P. Leonard, K. Sénéchal, and A. J. Harte (2003). pH Responsive Eu(III)-phenanthroline supramolecular conjugate: Novel ‘Off-On-Off’ luminescent signalling in the physiological pH range. J. Am. Chem. Soc. 125, 12062–12063.CrossRefPubMedGoogle Scholar
  40. 40.
    T. Gunnlaugsson, J. P. Leonard, K. Sénéchal, and A. J. Harte (2004). Eu(III)-cyclen-phen conjugate as a luminescent copper sensor: The formation of mixed polymetallic macrocyclic complexes in water. Chem. Commun. 125, 782–783.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of ChemistryCentre for Synthesis and Chemical Biology, Trinity College DublinDublin 2Ireland

Personalised recommendations