Journal of Fluorescence

, Volume 15, Issue 3, pp 423–432 | Cite as

Improved Routine Bio-Medical and Bio-Analytical Online Fluorescence Measurements Using Fluorescence Lifetime Resolution

  • Lutz Pfeifer
  • Karsten Stein
  • Ute Fink
  • Alexander Welker
  • Bianca Wetzl
  • Petra Bastian
  • Otto S. Wolfbeis


Fluorescence techniques are widely used as sensitive detection methods in bio-analytics. The use of the bio-physical parameter fluorescence lifetime additional to the spectral characteristics of fluorescence has the potential to improve fluorescence-related detection methods in terms of selectivity in signal recognition, robustness against disturbing influences, and the accessibility of novel bio-chemical process parameters. This article describes the technical set up of a time-resolving instrument with either a fixed time-gated detection principle for improved evaluation of tissue metabolism by an online monitoring of the tissue autofluorescence or a direct fluorescence lifetime detection principle for lifetime-based fluorescent assays.

Key Words

Time-resolved fluorescence fluorescence lifetime fluorescence assay autofluorescence metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Ince, J. M. C. C. Coremans, and H. A. Bruining (1992). In vivo NADH fluorescence. Adv. Exp. Med. Biol. 317, pp. 277–296.Google Scholar
  2. 2.
    I. J. Bigio and J. R. Mourant (1997). Ultraviolett and visible spectroscopies for tissue diagnostics: Fluorescence spectroscopy and elastic-scattering spectroscopy. Phys. Med. Biol. 42, 803–814Google Scholar
  3. 3.
    R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. J. Choy, and E. Opher (1987). Fluorescence spectra from cancerous and normal human breast and lung tissus. IEEE J. Quant. Electr. QE-23(10), 1806–1811.Google Scholar
  4. 4.
    K. Svanberg, S. Andersson-Engels, L. Baert, E. Bak-Jensen, R. Berg, A. Brun, S. Colleen, I. Idvall, M.-A. D’Hallewin, C. Ingvar, A. Johansson, S.-E. Karlsson, R. Lundgren, L. G. Salford, U. Stenram, L.-G. Str¨mblad, S. Svanberg, and I. Wang (1994). Tissue charakterization in some clinical specialities utilizing laser-induced fluorescence. in R. R. Alfano and A. Katzir (Eds.), Proceedings of the Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, SPIE Vol 2135 pp. 2– 15Google Scholar
  5. 5.
    K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch (1992). Ultraviolett laser-induced fluorescence of colonic tissue: Basic biology and diagnostic potential. Laser Surg. Med. 12, 63–78.Google Scholar
  6. 6.
    A. Fowler, D. Swift, E. Longman, A. Acornley, P. Hemsley, D. Murray, J. Unitt, I. Dale, E. Sullivan, and M. Coldwell (2002). An evaluation of fluorescence polarization and lifetime discriminated polarization for high throughput screening of serine/threonine kinases. Anal. Biochem. 308, 223–231.Google Scholar
  7. 7.
    C. Eggeling L. Brand, D. Ullmann, and S. J¨ger (2003). Highly sensitive fluorescence detection technology currently available for HTS. DDT 8(14), 632–641.Google Scholar
  8. 8.
    J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, 2nd edn. Plenum Press, New York.Google Scholar
  9. 9.
    B. Chance, P. Cohen, F. J¨bsis, and B. Schoener (1962). Intracellular oxidation–reduction states in vivo Science 137(3529), 499– 507.Google Scholar
  10. 10.
    H. A. Bruining, G. J. M. Pierik, C. Ince, and F. Ashruf (1992). Optical spectroscopic imaging for non-invasive evaluation of tissue oxygenation Chirurgie 118, 317–323.Google Scholar
  11. 11.
    J. Eng, R. M. Lynch, and R. S Balaban (1989). Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes. Biophys. J. 55, 621–630.Google Scholar
  12. 12.
    M. W. Riepe, K. Schmalzigaug, F. Fink, K. Oexle, and A. C. Ludolph (1996). NADH in the pyramidal cell layer of hippocampal regions CA1 and CA3 upon selective inhibition and uncoupling of oxidative phosphorylation. Brain Res. 710, 21–27.Google Scholar
  13. 13.
    M. B¨chner, R. Huber, C. Sturchler-Pierrat, M. Staufenbiel, and M. W. Riepe (2002). Impaired hypoxic tolerance and altered protein binding of nadh in presymptomatic App23 transgenic mice. Neuroscience 14(2), 285–289.Google Scholar
  14. 14.
    S. Schuchmann, R. Kovacs, O. Kann, U. Heinemann, and K. Buchheim (2001). Monitoring NAD(P)H autofluorescence to assess mitochondrial metabolic function in rat hippocampal-entorinal cortex slices. Brain Res. Protocols 7, 267–276.Google Scholar
  15. 15.
    J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson (1992). Fluorescence lifetime imaging of free and protein-bound NADH Proc. Natl. Acad. Sci. USA 89, 1271–1275.Google Scholar
  16. 16.
    W. S. Kunz, A. V. Kuznetsov, K. Winkler, F. N. Gellerich, S. Neuhof, and H. W. Neumann (1994). Measurement of fluorescence changes of NAD(P)H and of fluorescent flavoproteins in saponin-skinned human skeletal muscle fibers. Anal. Biochem. 216, 322–327.Google Scholar
  17. 17.
    L. Pfeifer, A. Welker, I. Gr¨nwald, K. Willoh, K. Stein, and R. Hetzer (2004). Fluorometric characterisation of Metabolism in Isolated pig hearts, using Time-Resolved Spectroscopy, (Submitted for publication)Google Scholar
  18. 18.
    E. Chinchoy, C. L. Soule, A. J. Houlton, W. J. Gallagher, M. A. Hjelle, T. G. Laske, J. Morissette, and P. A. Iaizzo (2000). Isolated four-chamber working swine heart model. Ann. Thorac. Surg. 70(5), 1607–1614.Google Scholar
  19. 19.
    H. Von Baeyer, K. Stahl, M. H¨usler, M. Meissler, V. Unger, J. Frank, Ch. Grosse-Siestrup, G. Kaczmarczyk, K. Affeld, H.-J. Flaig, and B. Steinbach (1997). Eine neue methode zur ex-vivo-vollblut-perfusion isolierter warmblutorgane, dargestellt an der niere von schweinen. Biomedizinische Technik 42, 61–68.Google Scholar
  20. 20.
    D. A. Scott, L. W. Grotyohann, J. Y. Cheung, and Jr. R. C. Scaduto (1994). Ratiometric methodology for NAD(P)H measurement in the perfused rat heart using surface fluorescence. Am. J. Physiol. 267 (Heart Circ. Physiol. 36), 636–644.Google Scholar
  21. 21.
    B. Wetzl, M. Gruber, P. Bastian, L. Pfeifer, K. Stein, and O. S. Wolfbeis (2004). Homogenous bioassays based on measurements of fluorescence lifetime. Miptec conference Basel, Poster presentation.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Lutz Pfeifer
    • 1
  • Karsten Stein
    • 1
  • Ute Fink
    • 1
  • Alexander Welker
    • 2
  • Bianca Wetzl
    • 3
  • Petra Bastian
    • 4
  • Otto S. Wolfbeis
    • 3
  1. 1.IOM Innovative Optische Messtechnik GmbHBerlinGermany
  2. 2.Deutsches Herzzentrum BerlinStiftung des bürgerlichen RechtsBerlinGermany
  3. 3.Institute for Analytical Biochemistry and SensorsUniversity RegensburgGermany
  4. 4.Chromeon GmbHRegensburgGermany

Personalised recommendations