Journal of Fluorescence

, Volume 15, Issue 2, pp 143–151 | Cite as

Fluorescent Methods to Study DNA, RNA, Proteins and Cytoplasmic Membrane Polarization in the Pentachlorophenol-Mineralizing Bacterium Sphingomonas sp. UG30 During Nutrient Starvation in Water

  • T. J. Denich
  • L. A. Beaudette
  • H. Lee
  • J. T. Trevors


The effect of sodium pentachlorophenolate (NaPCP) exposure on the nutrient-starved pentachlorophenol (PCP)-mineralizing bacterium Sphingomonas sp. UG30 was assessed using fluorescent methods to measure DNA, RNA, total cellular protein, and cytoplasmic membrane proteins. UG30 cells were inoculated into sterilized Speed River (Guelph, ON, Canada) water samples in the presence of 50, 100, and 250 ppm NaPCP. No marked changes were observed in the total cellular DNA, RNA or protein levels over 90 d, indicating the macromolecular composition of UG30 was not affected by both nutrient limitation and NaPCP. Total cell counts as determined by DAPI staining also did not change over 90 d. Over the same period, viable counts decreased with increasing concentrations of NaPCP. At 250 ppm NaPCP, viable cell counts decreased over 6 orders of magnitude after 1 hr exposure. Cell numbers partially recovered once NaPCP was degraded. The UG30 cytoplasmic membrane polarization ratio also decreased after NaPCP was depleted. The decreased polarization value at the end of the study period suggested the UG30 membrane was more fluid and that this increase in fluidity was due to nutrient starvation effects rather than exposure to NaPCP. These results indicated that UG30 is a robust organism that is able to degrade NaPCP even under adverse conditions and fluorescent methods are useful for determining macromolecular concentrations and cytoplasmic membrane polarization values.


Bacteria DNA fluorescence macromolecular membrane fluidity methods metabolism nutrient-starvation RNA Sphingomonas survival water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Y. Morita (1992). Low-nutrient environments. in Encyclopedia of Microbiology. Vol. 2, Academic Press, New York, pp. 617–624.Google Scholar
  2. 2.
    R. Y. Morita (1993). Bioavailability of energy and the starvation state. in S. Kjelleberg (Ed.), Starvation in Bacteria, Plenum Press, New York, pp. 8–16.Google Scholar
  3. 3.
    R. Y. Morita (1997). Bacteria in Oligotrophic Environments, Starvation-Survival Lifestyle. Chapman & Hall, New York.Google Scholar
  4. 4.
    F. Schut, R. A. Prins, and J. C. Gottschal (1997). Oligotrophy and pelagic marine bacteria: Facts and fiction. Aquat. Microb. Ecol. 12, 177–202.Google Scholar
  5. 5.
    P. S. Amy, C. Pauling, and R. Y. Morita (1983). Starvation-survival processes of a marine vibrio. Appl. Environ. Microbiol. 45, 1041–1048.Google Scholar
  6. 6.
    S. Kjelleberg, N. Albertson, K. Flardh, L. Holmquist, A. Jouper-Jaan, J. Marouga, J. Ostling, B. Svenbald, and D. Weichart (1993). How do non-differentiating bacteria adapt to starvation? Antonie van Leeuwenhoek 63, 333–341.PubMedGoogle Scholar
  7. 7.
    S. P. Watson, M. O. Clements, and S. J. Foster (1998). Characterization of the starvation-survival response of Staphylococcus aureus. J. Bacteriol. 180, 1750–1758.PubMedGoogle Scholar
  8. 8.
    A. Muela, I. Arana, J. I. Justo, C. Seco, and I. Barcina (1999). Changes in DNA content and cellular death during a starvation-survival process of Escherichia coli in river water. Microb. Ecol. 37, 62–69.PubMedGoogle Scholar
  9. 9.
    S. N. Wai, Y. Mizunoe, and S.-I. Yoshida (1999). How Vibrio cholerae survive during starvation. FEMS Microbiol. Lett. 180, 123–131.PubMedGoogle Scholar
  10. 10.
    J. W. Santo Domingo, S. Harmon, and J. Bennett (2000). Survival of Salmonella species in river water. Curr. Microbiol. 40, 409–417.PubMedGoogle Scholar
  11. 11.
    A. L. Koch (1971). The adaptive responses of Escherichia coli to a feast and famine existence. Adv. Microb. Physiol. 6, 147–217.PubMedGoogle Scholar
  12. 12.
    M. O. Clements and S. J. Foster (1998). Starvation recovery of Staphylococcus aureus 8325-4. Microbiol. 144, 1755–1763.Google Scholar
  13. 13.
    B. D. Davis, S. M. Luger, and P. C. Tai (1986). Role of ribosome degradation in the death of starved Escherichia coli cells. J. Bacteriol. 166, 439–445.PubMedGoogle Scholar
  14. 14.
    R. G. Groat, J. E. Schultz, E. Zychlinksy, A. Bockman, and A. Matin (1986). Starvation proteins in Escherichia coli: Kinetics of synthesis and role in starvation survival. J. Bacteriol. 168, 486–493.PubMedGoogle Scholar
  15. 15.
    K. C. Hebert and S. J. Foster (2001). Starvation survival in Listeria monocytogenes: Characterization of the response and the role of known and novel components. Microbiology 147, 2275–2284.PubMedGoogle Scholar
  16. 16.
    C. A. Reeve, P. S. Amy, and A. Matin (1984). Role of protein synthesis in the survival of carbon-starved Escherichia coli K-12. J. Bacteriol. 160, 1041–1046.PubMedGoogle Scholar
  17. 17.
    T. Nystrom, K. Flardh, and S. Kjelleberg (1990). Response to multiple-nutrient starvation in marine Vibrio sp. strain CCUG15956. J. Bacteriol. 172, 7085–7097.PubMedGoogle Scholar
  18. 18.
    K. E. S. Avelar, R. S. Moraes, L. J. F. Pinto, W. das Gracas Silva e Souza, R. M. C. P Domingues, and M. de Souza Ferreira (1998). Influence of stress conditions on Bacteriodes fragilis survival and protein profiles. Zent. bl. Bakteriol. 287, 399–409.Google Scholar
  19. 19.
    D. E. Jenkins, S. A. Chaisson, and A. Matin (1990). Starvation-induced cross protection against osmotic challenge in Escherichia coli. J. Bacteriol. 172, 2779–2781.PubMedGoogle Scholar
  20. 20.
    P. Boyaval, E. Boyaval, and M. J. Desmazeaud (1985). Survival of Brevibacterium linens during nutrient starvation and intracellular changes. Arch. Microbiol. 141, 128–132.PubMedGoogle Scholar
  21. 21.
    J. Garcia-Lara, J. Martinez, M. Vilamu, and J. Vives-Rego (1993). Effects of previous growth conditions on the starvation-survival of Escherichia coli in seawater. J. Gen. Microbiol. 139, 1425–1431.PubMedGoogle Scholar
  22. 22.
    K. Takayama and S. Kjelleberg (2000). The role of RNA stability during bacterial stress responses and starvation. Environ. Microbiol. 2, 355–365.PubMedGoogle Scholar
  23. 23.
    S. Kjelleberg, M. Hermansson, P. Marden, and G. W. Jones (1987). The transient phase between growth and nongrowth of heterotrophic bacteria with emphasis on the marine environment. Ann. Rev. Microbiol. 41, 25–49.Google Scholar
  24. 24.
    J. D. Oliver (1993). Formation of viable but non-culturable cells. in S. Kjelleberg (Ed.), Starvation in Bacteria, Plenum Press, New York, pp. 239–268.Google Scholar
  25. 25.
    P. A. Jones (1981). Chlorophenols and Their Impurities in the Canadian Environment, En 46-4/81-2. Ottawa, Environment Canada.Google Scholar
  26. 26.
    D. D. Kaufman (1977). Degradation of pentachlorophenol in soil by soil microorganisms. in K. R. Rao (Ed.), Pentachlorophenol: Chemistry, Pharmacology, and Environmental Toxicology, Plenum Press, New York, pp. 27–39.Google Scholar
  27. 27.
    D. P. Cirelli (1978). Patterns of pentachlorophenol usage in the United States of America–-an overview. In K. R. Rao (Ed.), Pentachlorophenol: Chemistry, Pharmacology and Environmental Toxicology. Environmental Research 12. Plenum Press, New York, pp. 13–18.Google Scholar
  28. 28.
    R. C. Doughtery (1977). Human exposure to pentachlorophenol. in K. R. Rao (Ed.), Pentachlorophenol: Chemistry, Pharmacology and Environmental Toxicology, Plenum Press, New York, pp. 351–361.Google Scholar
  29. 29.
    F. W. Kutz, R. S. Murphy, and S. C. Stassman (1977). Survey of pesticide residues and their metabolites in urine from the general populations. in K. R. Rao (Ed.), Pentachlorophenol: Chemistry, Pharmacology and Environmental Toxicology, Plenum Press, New York, pp. 363–369.Google Scholar
  30. 30.
    D. G. Crosby (1981). Environmental chemistry of pentachlorophenol. Pure Appl. Chem. 53, 1051–1080.Google Scholar
  31. 31.
    R. Frank, H. E. Braun, K. I. Stonefield, J. Rasper, and H. Luyken (1990). Organochlorine and organophosphorous residues in the fat of the domestic farm animals species, Ontario, Canada 1986–1988. Food Addit. Contam. 7, 629–636.PubMedGoogle Scholar
  32. 32.
    C. P. Sandau, P. Ayotte, E. Dewailly, J. Duffe, and R. J. Worstrom (2002). Pentachlorophenol and hydroxylated biphenyl metabolites in umbilical cord plasma of neonates from coastal populations in Quebec. Environ. Health Perspect. 110, 411–417.PubMedGoogle Scholar
  33. 33.
    L. H. Keith and W. A. Telliard (1979). Priority pollutants I-a perspective view. Environ. Sci. Technol. 13, 416–423.Google Scholar
  34. 34.
    S. R. Wild, S. J. Harrad, and K. C. Jones (1993). Chlorophenols in digested U.K. sewage sludges. Water Res. 27, 1527–1534.Google Scholar
  35. 35.
    K. T. Leung, M. B. Cassidy, K. W. Shaw, H. Lee, J. T. Trevors, E.-M. Lohmeier-Vogel, and H. J. Vogel. (1997). Pentachlorophenol biodegradation by Pseudomonas spp. UG25 and UG30. World J. Microbiol. Biotechnol. 13, 305–313.Google Scholar
  36. 36.
    E. Weinbach (1954). Effect of pentachlorophenol on oxidative phosphorylation. J. Biol. Chem. 210, 545–550.PubMedGoogle Scholar
  37. 37.
    K. Imai, A. Asano, and R. Sato (1967). Oxidative phosphorylation in Micrococcus denitrificans: I. Prepartion and properties of phosphorylation membrane fragments. Biochem. Biophys. Acta 143, 462–476.PubMedGoogle Scholar
  38. 38.
    E. M. Lohmeier-Vogel, K. T. Leung, H. Lee, J. T. Trevors, and H. J. Vogel (2001). Phosphorous-31 nuclear magnetic resonance study of the effect of pentachlorophenol (PCP) on the physiologies of PCP-degrading microorganism. Appl. Environ. Microbiol. 67, 3549–3356.PubMedGoogle Scholar
  39. 39.
    M. Sinensky (1974). Homeoviscous adaptation: A homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 71, 522–525.Google Scholar
  40. 40.
    T. J. Denich, M. B. Cassidy, L. A. Beaudette, H. Lee, and J. T. Trevors (2003). Membrane fluidity of the pentachlorophenol-mineralizing Sphingomonas sp. UG30. J. Fluorescence 13, 385–391.Google Scholar
  41. 41.
    M. Shinitzky and Y. Barenholz (1978). Fluidity parameters determined by fluorescence polarization. Biochim. Biophys. Acta. 515, 367–394.PubMedGoogle Scholar
  42. 42.
    B. J. Litman and Y. Barenholz (1982). Fluorescent probe: Diphenylhexatriene. Methods Enzymol. 81, 678–685.PubMedGoogle Scholar
  43. 43.
    V. Borenstain and Y. Barenholz (1993). Characterization of liposomes and other lipid assemblies by multiprobe fluorescence polarization. Chem. Phys. Lipids. 64, 117–127.PubMedGoogle Scholar
  44. 44.
    J. R. Lakowicz (1983). Principles of Fluorescence Spectroscopy. Plenum Press, New York.Google Scholar
  45. 45.
    M. Adler and T. R. Tritton (1988). Flourescence depolarization measurements in oriented membranes. Biophys. J. 53, 989–1005.PubMedGoogle Scholar
  46. 46.
    M. C. Antunes-Madeira and V. M. C. Madeira (1989). Membrane fluidity as affected by the insecticide lindane. Biochim. Biophys. Acta. 982, 161–166.PubMedGoogle Scholar
  47. 47.
    M. C. Antunes-Madeira, R. A. Videira, and V. M. C. Madeira (1994). Effects of parathion on membrane organization and its implications for the mechanisms of toxicity. Biochim. Biophys. Acta. 1190, 149–154.PubMedGoogle Scholar
  48. 48.
    M. Sasser (1990). MIDI Technical Note 101: Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI, Newark, DE.Google Scholar
  49. 49.
    I. S. Kim, H. Lee, and J. T. Trevors (2002). Alterations in the fatty acid composition and fluidity of cell membranes affect the accumulation of PCB congener 2,2′,5,5′-tetrachlorobiphenyl by Ralstonia eutropha H850. J. Chem. Technol. Biotechnol. 77, 793–799.Google Scholar
  50. 50.
    M. B. Cassidy, K. T. Leung, H. Lee, and J. T. Trevors (2000). A comparison of enumeration methods for culturable Pseudomonas fluorescens cells marked with green fluorescent protein. J. Microbiol. Methods. 40, 135–145.PubMedGoogle Scholar
  51. 51.
    J. Gallant and S. R. Suskind (1961). Relationship between thymineless death and ultraviolet inactivation in Escherichia coli. J. Bacteriol. 82, 187–194.PubMedGoogle Scholar
  52. 52.
    M. B. Habash, L. A. Beaudette, M. B. Cassidy, H. J. Vogel, J. T. Trevors, and H. Lee (2002). Cloning and characterization of a tetrachlorohydroquinone reductive dehalogenase from Sphingomonas sp. UG30. Biochem. Biophys. Res. Comm. 299, 634–640.PubMedGoogle Scholar
  53. 53.
    D. H. Siegele and R. Kolter (1992). Life after log. J. Bacteriol. 174, 345–348.PubMedGoogle Scholar
  54. 54.
    F. Fegatella and R. Cavicchioli (2000). Physiological responses to starvation in the marine oligotrophic ultramicrobaterium Sphingomonas sp. strain RB2256. Appl. Environ. Microbiol. 55, 2037–2044.Google Scholar
  55. 55.
    M. A. Hood, J. B. Guckert, D. C. White, and F. Deck (1986). Effect of nutrient deprivation of lipid, carbohydrate, DNA, RNA and protein levels in Vibrio cholerae. Appl. Environ. Microbiol. 52, 788–793.PubMedGoogle Scholar
  56. 56.
    E. Galdiereo, G. Donnarumma, L. de-Martino, A. Marcatili, G. C. de-l’Ero, and A. Merone (1994). Effect of low-nutrient seawater on morphology, chemical composition and virulence of Salmonella typhimurium. Arch. Microbiol. 162, 41–47.PubMedGoogle Scholar
  57. 57.
    T. J. Denich, L. A. Beaudette, H. Lee, and J. T. Trevors, (2003). Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J. Microbiol. Methods 52, 149–182.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Environmental BiologyUniversity of GuelphGuelphCanada
  2. 2.Environment CanadaWastewater Technology CentreBurlingtonCanada

Personalised recommendations