Journal of Fluorescence

, Volume 15, Issue 2, pp 99–104 | Cite as

Metal-Enhanced Fluorescence from Plastic Substrates

  • Kadir Aslan
  • Ramachandram Badugu
  • Joseph R. Lakowicz
  • Chris D. Geddes


We report the first findings of Metal-Enhanced Fluorescence (MEF) from modified plastic substrates. In the past several years our laboratories have reported the favorable effects of fluorophores in close proximity to silver nanoparticles. These effects include, enhanced fluorescence intensities, (increased detectability), and reduced lifetimes, (enhanced fluorophore photostability). All of these reports have featured silver nanostructures and fluorophores which have been immobilized onto clean glass or quartz surfaces. In this report we show how plastic surfaces can be modified to obtain surface functionality, which in turn allows for silver deposition and therefore metal-enhanced fluorescence of fluorophores positioned above the silver using a protein spacer. Our findings show that plastic substrates are ideal surfaces for metal-enhanced phenomena, producing similar enhancements as compared to clean glass surfaces. Subsequently, we speculate that plastic substrates for MEF will find common place, as compared to the more expensive and less versatile traditional silica based supports.


Metal-enhanced fluorescence radiative decay engineering plastics modified plastics polycarbonate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. D. Geddes and J. R. Lakowicz (2002). Metal-enhanced fluorescence. J. Fluoresc. 12(2), 121–129.Google Scholar
  2. 2.
    J. R. Lakowicz (2001). Radiative decay engineering: Biophysical and biomedical applications. Appl. Biochem. 298, 1–24.Google Scholar
  3. 3.
    J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Grcyzynski, and I. Gryczynski (2002). Radiative decay engineering 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer, Anal. Biochem. 301, 261–277.PubMedGoogle Scholar
  4. 4.
    C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Fang, and J. R. Lakowicz (2003). Metal-enhanced fluorescence due to silver colloids on a planar surface: Potential applications of Indocyanine green to in vivo imaging. J. Phys. Chem. A 107, 3443–3449.Google Scholar
  5. 5.
    C. D. Geddes, K. Aslan, I. Gryczynski, J. Malicka, and J. R. Lakowicz (2004) in C. D. Geddes (Ed.) Noble Metal Nanostructure for Metal-Enhanced Fluorescence, Reviews in Fluorescence 2004, Springer, New York, pp. 365–401.Google Scholar
  6. 6.
    Y. Liu, D. Ganser, A. Schneider, P. Grodzinski, and N. Kroutchinina (2001). Microfabricated polycarbonate CE devices for DNA analysis. Anal. Chem. 73, 4196–4201.PubMedGoogle Scholar
  7. 7.
    M. Boerner, M. Kohl, F. Pantenburg, W. Bacher, H. Hein, and W. Schomburg (1996). Microsyst. Technol. 2, 149–152.Google Scholar
  8. 8.
    M. A. Roberts, J. S. Rossier, P. Bercier, and H. Girault (1997). UV laser machined polymer substrates for the development of microdiagnostic systems. Anal. Chem. 69, 2035–2042.Google Scholar
  9. 9.
    L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, and W. MacCrehan (1997). Fabrication of plastic microfluid channels by imprinting methods. Anal. Chem. 69, 4783–4789.PubMedGoogle Scholar
  10. 10.
    J. Xu, L. Locascio, M. Gaitan, and C. S. Lee (2000). Room-temperature imprinting method for plastic microchannel fabrication. Anal. Chem. 72, 1930–1933.PubMedGoogle Scholar
  11. 11.
    R. M. McCormick, R. J. Nelson, M. G. Alonso-Amigo, D. J. Benvegnu, and H. H. Hooper (1997). Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal. Chem. 69, 2626–2630.PubMedGoogle Scholar
  12. 12.
    L. Dauginet, A.-S. Duwez, R. Legras, and S. Demoustier-Champagne. Surface modification of polycarbonate and poly(ethyleneterephthalate) films and membranes by polyelectrolyte deposition. Langmuir 17, 3952–3957.Google Scholar
  13. 13.
    Y. Xu, B. Vaidya, A. B. Patel, S. M. Ford, R. L. McCarley, and S. A. Soper (2003). Solid-phase reversible immobilization in microfluidic chips for the purification of dye-labeled DNA sequencing fragments. Anal. Chem. 75, 2975–2984.PubMedGoogle Scholar
  14. 14.
    J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, Kluwer, New York.Google Scholar
  15. 15.
    W. Ward and T. J. McCarthy (1989) in H. F Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz (Eds.), Encyclopedia of Polymer Science and Engineering, 2nd ed. John Wiley and Sons, New York, 1989, suppl. vol. pp. 674–689.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Kadir Aslan
    • 1
  • Ramachandram Badugu
    • 2
  • Joseph R. Lakowicz
    • 2
  • Chris D. Geddes
    • 1
    • 2
  1. 1.Laboratory for Advanced Medical PlasmonicsInstitute of Fluorescence, Medical Biotechnology Center, University of Maryland Biotechnology InstituteBaltimoreMaryland
  2. 2.Center for Fluorescence Spectroscopy, Medical Biotechnology CenterUniversity of Maryland School of MedicineBaltimoreMaryland

Personalised recommendations