Journal of Fluorescence

, Volume 15, Issue 1, pp 3–11 | Cite as

One- and Two-Photon Fluorescence Anisotropy of Selected Fluorene Derivatives

  • K. D. Belfield
  • M. V. Bondar
  • J. M. Hales
  • A. R. Morales
  • O. V. Przhonska
  • K. J. Schafer


The steady-state excitation anisotropy spectra of fluorene derivatives were measured in viscous solvents, under the one- and two-photon excitation, over a broad spectral range (UV–Visible). The orientation of their absorption transition moments for the first, S0→S1, and second, S0→S2, excited states were determined. It was shown experimentally that a decrease in the angle between S0→S1and S0→S2 transitions corresponded to an increased value of two-photon absorption (2PA) cross section for these molecules. Two-photon excitation anisotropy was nearly constant over the spectral region investigated (in contrast to one-photon excitation anisotropy spectra) and can be roughly explained by a simple model of 2PA based on the single intermediate state approximation. For comparison, the same trend in two-photon excitation anisotropy was observed for Rhodamine B inglycerol.


Two-photon excitation anisotropy steady-state fluorescence transition dipole moments fluorene derivatives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. D. Hall, B. Valeur, and G. Weber (1985). Polarization of the fluorescence of triphenylene: A planar molecule with three-fold symmetry. Chem. Phys. Lett. 116, 202–205.Google Scholar
  2. 2.
    J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, 2nd ed, Kluwer Academic/Plenum Press, New York.Google Scholar
  3. 3.
    M. Shinitzky, A. C. Dianoux, C. Gitler, and G. Weber (1971). Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescent probes. I. Synthetic micelles. Biochemistry 10, 2106–2113.Google Scholar
  4. 4.
    U. Cogan, M. Shinitzky, G. Weber, and T. Nishida (1973). Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry 12, 521–528.Google Scholar
  5. 5.
    J. Michl and E. W. Thulstrup (1987). Ultraviolet and infrared linear dichroism: Polarized light as a probe of molecular and electronic structure. Acc. Chem. Res. 20, 192–199.Google Scholar
  6. 6.
    M. Van Gurp and Y. K. Levine (1989). Determination of transition moment directions in molecules of low symmetry using polarized fluorescence. I. Theory. J. Chem. Phys. 90, 4095–4102.Google Scholar
  7. 7.
    N. Sarkar, S. Takeuchi, and T. Tahara (1999). Vibronic relaxation of polyatomic molecule in nonpolar solvent: Femtosecond anisotropy/intensity measurements of the Sn and S1 fluorescence of tetracene. J. Phys. Chem. 103, 4808–4814.Google Scholar
  8. 8.
    N. Ito, O. Kajimoto, and K. Hara (2002). High-pressure studies of rotational dynamics for coumarin 153 in alcohols and alkanes. J. Phys. Chem. A 106, 6024–6029.Google Scholar
  9. 9.
    M. I. Ranasinghe, O. P. Varnavski, J. Pawlas, S. I. Hauck, J. Louie, J. F. Hartwig, and T. Goodson (2002). Femtosecond excitation energy transport in triarylamine dendrimers. J. Am. Chem. Soc. 124, 6520–6521.Google Scholar
  10. 10.
    P. Toele, H. Zhang, and M. Glasbeek (2002). Femtosecond fluorescence anisotropy studies of excited-state intramolecular double-proton transfer in [2,2′-bipyridyl]-3,3′-diol in solution. J. Phys. Chem. A 106, 3651–3658.Google Scholar
  11. 11.
    S. W. Pauls, J. F. Hedstrom, and C. K. Johnson (1998). Rotational relaxation of perylene in n-alcohols and n-alkanes studied by two-photon-induced anisotropy decay. Chem. Phys. 237, 205–222.Google Scholar
  12. 12.
    G. Lipari and A. Szabo (1980). Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys. J. 30, 489–506.Google Scholar
  13. 13.
    A. Volkmer, V. Subramaniam, D.J. S. Birch, and T. M. Jovin (2000). One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys. J. 78, 1589–1598.Google Scholar
  14. 14.
    G. A. Baker, S. Pandey, and F. V. Bright (2000). Extending the reach of immunoassays to optically dense specimens by using two-photon excited fluorescence polarization. Anal. Chem. 72, 5748–5752.Google Scholar
  15. 15.
    B. Kierdaszuk, H. Malak, I. Gryczynski, P. Callis, and J. R. Lakowicz (1996). Fluorescence of reduced nicotinamides using one- and two-photon excitation. Biophys. Chem. 62, 1–13.Google Scholar
  16. 16.
    J. R. Lakowicz, B. Kierdaszuk, P. Callis, H. Malak, and I. Gryczynski (1995). Fluorescence anisotropy of tyrosine using one-and two-photon excitation. Biophys. Chem. 56, 263–271.Google Scholar
  17. 17.
    J. R. Lakowicz, I. Gryczynski, E. Danielsen, and J. Frisoli (1992). Anisotropy spectra of indole and N-acetyl-l-tryptophanamide observed for two-photon excitation of fluorescence. Chem. Phys. Lett. 194, 282–286.Google Scholar
  18. 18.
    J. R. Lakowicz and I. Gryczynski (1997). In J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Nonlinear and Two-Photon Induced Fluorescence, Vol. 5, Plenum Press, New York, pp. 87–144.Google Scholar
  19. 19.
    I. Gryczynski, H. Malak, and J. R. Lakowicz (1999). Three-photon excitation of N-acetyl-L-tyrosinamide. Biophys. Chem. 79, 25–32.Google Scholar
  20. 20.
    K. D. Belfield, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, and R. A. Negres (1999). New two-photon absorbing fluorene derivatives: Synthesis and nonlinear optical characterization. Org. Lett. 1, 1575–1578.Google Scholar
  21. 21.
    K. D. Belfield, K. J. Schafer, W. Mourad, and B. A. Reinhardt (2000). Synthesis of new two-photon absorbing fluorene derivatives via Cu-mediated Ullmann condensations. J. Org. Chem. 65, 4475–4481.Google Scholar
  22. 22.
    K. D. Belfield, A. R. Morales, B. -S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, and J. Percino (2004). Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives. Chem. Mater. 16, 4634–4641.Google Scholar
  23. 23.
    K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, and W. Mourad (2002). Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes. J. Lumin. 97, 141–146.Google Scholar
  24. 24.
    K. D. Belfield, M. V. Bondar, O. V. Przhonska, and K. J. Schafer (2002). Steady-state spectroscopic and fluorescence lifetime measurements of new two-photon absorbing fluorene derivatives. J. Fluorescence 12, 449–454.Google Scholar
  25. 25.
    R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Yu. L. Slominsky, and A. D. Kachkovski (2003). Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump-probe measurements. Chem. Phys. 286, 277–291.Google Scholar
  26. 26.
    C. Xu and W. W. Webb (1996). Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 13, 481–491.Google Scholar
  27. 27.
    P. R. Calli (1997). in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Nonlinear and Two-photon Induced Fluorescence, Vol. 5, Plenum Press, New York, pp. 1–42.Google Scholar
  28. 28.
    R. R. Birge (1986). Two-photon spectroscopy of protein-bound chromophores. Acc. Chem. Res. 19, 138–146.Google Scholar
  29. 29.
    M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu (1998). Design of organic molecules with large two-photon absorption cross sections. Science 281, 1653–1656.Google Scholar
  30. 30.
    T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, and J. L. Bredas (1998). Mechanisms for enhancement of two-photon absorption in donor-acceptor conjugated chromophores. Chem. Phys. Lett. 298, 1–6.Google Scholar
  31. 31.
    V. A. Gaisenok and A. M. Sarzhevskii (1986). Anizotropiya Pogloshcheniya i Luminescencii Mnogoatomnux Molekul, Universitetskoe, Minsk.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • K. D. Belfield
    • 1
    • 2
  • M. V. Bondar
    • 3
  • J. M. Hales
    • 2
  • A. R. Morales
    • 1
  • O. V. Przhonska
    • 3
  • K. J. Schafer
    • 1
  1. 1.Department of ChemistryUniversity of Central FloridaOrlando
  2. 2.College of Optics and Photonics: CREOL & FPCEUniversity of Central FloridaOrlando
  3. 3.Institute of Physics, Prospect NaukiKievUkraine

Personalised recommendations