Journal of Fluorescence

, Volume 16, Issue 2, pp 227–231 | Cite as

Fluorescence Study of Dehydroabietic Acid-Based Bipolar Arylamine-Quinoxalines

  • H. D. Burrows
  • S. M. Fonseca
  • B. Gigante
  • M. A. Esteves
  • A. M. Guerreiro

The absorption and fluorescence spectra, lifetimes and quantum yields of a series of triarylaminequinoxaline bipolar compounds, with and without the bulky dehydroabietic acid group, have been studied in toluene solution. This bulky group is introduced to improve solubility and thermal properties of these systems. It is shown that this does not affect their spectral or photophysical behavior. The compounds show relatively strong fluorescence, with the emission maximum strongly dependent upon the substituents present. Oxidation potentials have also been determined in acetonitrile solution, and again indicate that introduction of the resin acid moiety has no effect on these properties.


Fluorescence triarylamines quinoxalines dehydroabietic acid 



We thank the Programa Operacional Ciência, Tecnologia, Investigação (POCTI), Fundação para a Ciência e a Tecnologia (FCT) and the Fundo Europeu de Desenvolvimento Regional (FEDER) for financial support. One of us (SMF) thanks FCT for the award of a Postdoctoral Fellowship.


  1. 1.
    R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Löglund, and W. R. Salaneck (1999). Electroluminescence in conjugated polymers. Nature 397, 121–128.CrossRefGoogle Scholar
  2. 2.
    S. R. Forrest (2004). The path to the ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918.PubMedCrossRefGoogle Scholar
  3. 3.
    D. M. Pai, J. F. Yanus, and M. Stolka (1984). Trap-controlled hopping transport. J. Phys. Chem. 88, 4714–4717.CrossRefGoogle Scholar
  4. 4.
    K. R. Justin Tomas, J. T. Lin, Y.-T. Tao, and C.-H. Chuen (2002). Electroluminescent bipolar compounds containing quinoxaline or pyridopyrazine and triarylamine segments. J. Mater. Chem. 14, 3516–3522.CrossRefGoogle Scholar
  5. 5.
    P. Karastatiris, J. A. Mikroyannidis, I. K. Spiliopoulos, A. P. Kulkarni, and S. A. Jenekhe (2004). Synthesis, photophysics, and electroluminescence of new quinoxaline-containing poly(p-phenylenevinylene)s. Macromolecules 37, 7867–7878.CrossRefGoogle Scholar
  6. 6.
    T. Hirayama, S. Yamasaki, H. Ameku, T. Ishi-i, T. Thiemann, and S. Mataka (2005). Fluorescent solvatochromism of bipolar N,N-diphenylaminoaryl-substituted hexaazatriphenylenes, tetraazaphenanthrene, and quinoxalines. Dyes Pigments 67, 105–110.CrossRefGoogle Scholar
  7. 7.
    H. D. Burrows, R. A. E. Castro, M. A. Esteves, B. Gigante, M. L. P. Leitão, and A. C. Pauleta (2006). Novel organic hole transport layers for molecular electronic systems. Mater. Sci. Forum, 514–516, 8–12.Google Scholar
  8. 8.
    H. D. Burrows, R. A. E. Castro, M. A. Esteves, B. Gigante, J. Morgado, M. L. P. Leitão, and A. C. Pauleta (2006). Dehydroabietic acid based triarylamines as novel hole transport layer. J. Mater. Chem. submitted for publication.Google Scholar
  9. 9.
    J. E. Adams, W. W. Mantulin, and J. R. Huber (1973). Effect of molecular geometry on spin-orbit coupling of aromatic amines. J. Am. Chem. Soc. 95, 5477–5481.CrossRefGoogle Scholar
  10. 10.
    T. Fonseca, B. Gigante, M. M. Marques, T. L. Gilchrist, and E. DeClercq (2004). Synthesis and antiviral evaluation of benzimidazoles, quinoxalines and indoles from dehydroabietic acid. Bioorg. Med. Chem. 12, 103–112.PubMedCrossRefGoogle Scholar
  11. 11.
    T. Yamamoto, M. Nishiyama, and Y. Koie (1998). Palladium-catalyzed synthesis of triarylamines from aryl halides and diarylamines. Tetrahedron Lett. 39, 2367–2370.CrossRefGoogle Scholar
  12. 12.
    B. Gigante, M. A. Esteves, A. M. Guerreiro, S. M. Fonseca, and H. D. Burrows, Electroluminescent bipolar compounds based on dehydroabietic acid arylamine-quinoxalines, J. Mater. Chem., submitted for publication.Google Scholar
  13. 13.
    R. S. Becker, J. Seixas de Melo, A. L. Maçanita, and F. Elisei (1996). Comprehensive evaluation of the absorption, photophysical, energy transfer, structural, and theoretical properties of α-oligothiophenes with one to seven rings. J. Phys. Chem. 100, 18683–18695.CrossRefGoogle Scholar
  14. 14.
    G. Striker, V. Subramaniam, C. A. M. Seidel, and A. Volkmer (1999). Photochromicity and fluorescence lifetimes of green fluorescent protein. J. Phys. Chem. B 103, 8612–8617.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • H. D. Burrows
    • 1
  • S. M. Fonseca
    • 1
  • B. Gigante
    • 2
  • M. A. Esteves
    • 2
  • A. M. Guerreiro
    • 2
  1. 1.Departamento de QuímicaUniversidade de CoimbraCoimbraPortugal
  2. 2.INETI-DTIQLisbonPortugal

Personalised recommendations