Journal of Fluorescence

, Volume 16, Issue 3, pp 301–307 | Cite as

Relation Between Fluorescence Decays and Temporal Evolution of Excited States

  • János Erostyák
  • Géza Makkai
  • Andrea Buzády
  • Péter Molnár
  • Sergei V. Kukhlevsky

A differential equation system describing the temporal evolution of excited substates and fluorescence emission were tested using a DOPRI algorithm. The numerical solutions show that there is significant difference in the measurable parameters according to the type of connectivity among the excited substates. In the globally connected case, the fluorescence emission exhibits a double exponential behavior, and the first moment of the emitted spectrum decays with stretched exponential characterized by β < 1. In the diffusive case the fluorescence emission cannot be always fitted with double exponential, and the first moment of the emitted spectrum may decay with stretched exponential characterized by β > 1. Details of modeling and the possibilities of drawing conclusions are also presented.


fluorescence decay excited state relaxation stretched exponential numerical solution 



We thank Prof. Béla Somogyi, the Head of Institute of Biophysics at the University of Pécs for interesting and helpful discussions.


  1. 1.
    J. R. Lakowitz (1983). Principles of Fluorescent Spectroscopy, Plenum Press, New York.Google Scholar
  2. 2.
    J. R. Lakowitz (1991). Topics in Fluorescence Spectroscopy, Plenum Press, New York.Google Scholar
  3. 3.
    M. Gruebele (1998). Intramolecular vibrational dephasing obeys a power law at intermediate times. Proc. Natl. Acad. Sci. U.S.A. 95, 5965–5970.CrossRefPubMedGoogle Scholar
  4. 4.
    D. Toptygin and L. Brand (2000). Spectrally and time-resolved fluorescence emission of indole during solvent relaxation: A quantitative model. Chem. Phys. Lett. 322, 496–502.CrossRefGoogle Scholar
  5. 5.
    K. Kuczera, J. C. Lambry, J. L. Martin, and M. Karplus (1993). Nonexponential relaxation after ligand dissociation from myoglobin. A molecular dynamics simulation. Proc. Natl. Acad. Sci. U.S.A. 90, 5805–5807.PubMedCrossRefGoogle Scholar
  6. 6.
    Y. Feldman, A. Puzenko, and Y. Ryabov (2002). Non-Debye dielectric relaxation in complex materials. Chem. Phys. 284, 139–168.CrossRefGoogle Scholar
  7. 7.
    M. Lim, T. A. Jackson, and P. A. Anfinrud (1993). Nonexponential protein relaxation: Dynamics of conformational change in myoglobin. Proc. Natl. Acad. Sci. U.S.A. 90, 5801–5804.PubMedCrossRefGoogle Scholar
  8. 8.
    S. J. Hagen (2003). Exponential decay kinetics in “Downhill” protein folding. PROTEINS: Struct. Funct. Genet. 50, 1–4.CrossRefGoogle Scholar
  9. 9.
    J. R. Lakowicz (2000). On spectral relaxation in proteins. Photochem. Photobiol. 72(4), 421–437.CrossRefPubMedGoogle Scholar
  10. 10.
    J. Gapinski, M. Paluch, and A. Patkowski (2002). Correlation between nonexponential relaxation and non-Arrhenius behavior under conditions of high compression. Phys. Rev. E 66(1), 011501.CrossRefGoogle Scholar
  11. 11.
    F. Piazza, P. De Los Rios, and Y.-H. Sanejouand (2005). Slow energy relaxation of macromolecules and nanoclusters in solution. PRL 94, 145502.CrossRefGoogle Scholar
  12. 12.
    S. J. Hagen and W. A. Eaton (1996). Nonexponential structural relaxations in proteins. J. Chem. Phys. 104(9), 3395–3398.CrossRefGoogle Scholar
  13. 13.
    J. Sabelko, J. Ervin, and M. Gruebele (1999). Observation of strange kinetics in protein folding. Proc. Natl. Acad. Sci. U.S.A. 96, 6031–6036.CrossRefPubMedGoogle Scholar
  14. 14.
    E. A. Burstein and V. I. Emelyanenko (1996). Log-normal description of fluorescence spectra of organic fluorophores. Photochem. Photobiol. 64(2), 316–320.Google Scholar
  15. 15.
    J. R. Dormand and P. J. Prince (1980). A family of embedded Runge-Kutta formulae. J. Comp. Appl. Math. 6, 19–26.CrossRefGoogle Scholar
  16. 16.
    H. K. Nakamura, M. Sasai, and M. Takano (2004). Squeezed exponential kinetics to describe a nonglassy downhill folding as observed in a lattice protein model. PROTEINS: Struct. Funct. Bioinform. 55, 99–106.CrossRefGoogle Scholar
  17. 17.
    R. P. De Toma and L. Brand (1977). Excited state solvation dynamics of 2-anilinonaphthalene. Chem. Phys. Lett. 47, 231–236.CrossRefGoogle Scholar
  18. 18.
    J. R. Lakowitz, H. Cherek, G. Laczko, and E. Gratton (1984). Time-resolved fluorescence emission spectra of labeled hospholipid vesicles, as observed using multi-frequency phase-modulatoin fluorometry. Biochim. Biophys. Acta 777, 183–193.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • János Erostyák
    • 1
  • Géza Makkai
    • 1
  • Andrea Buzády
    • 1
  • Péter Molnár
    • 1
  • Sergei V. Kukhlevsky
    • 1
  1. 1.Department of Experimental Physics, Faculty of SciencesUniversity of PécsPécsHungary

Personalised recommendations