Journal of Fluorescence

, 16:191 | Cite as

Theory of Directed Electronic Energy Transfer

  • David L. Andrews
  • Richard G. Crisp
Original Paper


The migration of electronic energy between molecules or chromophores in molecular solids is a well-studied phenomenon. The ability to exert control over the directionality of this transfer, by a variety of methods involving applied electrical or optical fields, holds promise for advances in fields including nanoelectronics and energy harvesting materials. In this paper, we review in detail a number of methods for directing energy transfer, also identifying potential applications.


Dendrimers Energy transfer Nanophotonics Optical switching Photosynthesis 



Research in the quantum electrodynamics group at UEA is funded by the UK Engineering and Physical Sciences Research Council (EPSRC). We gladly acknowledge the award of an EPSRC studentship to RGC.


  1. 1.
    T. Förster (1948).*Zwischenmolekulare Energiewanderung Und Fluoreszenz. Ann. Phys.-Berlin 2(1–2), 55–75.CrossRefGoogle Scholar
  2. 2.
    D. P. Craig and T. Thirunamachandran (1986). Radiation molecule and molecule–molecule interactions—A unified viewpoint from quantum electrodynamics. Accounts Chem. Res. 19(1), 10–16.CrossRefGoogle Scholar
  3. 3.
    D. L. Andrews and B. S. Sherborne (1987). Resonant excitation transfer: A quantum electrodynamical study. J. Chem. Phys. 86(7), 4011–4017.CrossRefGoogle Scholar
  4. 4.
    G. Juzeliunas and D. L. Andrews (2000). Quantum electrodynamics of resonance energy transfer. Adv. Chem. Phys. 112, 357–410.CrossRefGoogle Scholar
  5. 5.
    G. J. Daniels, R. D. Jenkins, D. S. Bradshaw, and D. L. Andrews (2003). Resonance energy transfer: The unified theory revisited. J. Chem. Phys. 119(4), 2264–2274.CrossRefGoogle Scholar
  6. 6.
    A. Salam (2005). A general formula for the rate of resonant transfer of energy between two electric multipole moments of arbitrary order using molecular quantum electrodynamics. J. Chem. Phys. 122(4), 044112.Google Scholar
  7. 7.
    A. Salam (2005). Resonant transfer of excitation between two molecules using Maxwell fields. J. Chem. Phys. 122(4), 044113.Google Scholar
  8. 8.
    X. Hu and K. Schulten (1998). Model for the light-harvesting complex I (B875) of Rhodobacter sphaeroides. Biophys. J. 75, 683–694.PubMedCrossRefGoogle Scholar
  9. 9.
    V. Sundström, T. Pullerits, and R. van Grondelle (1999). Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J. Phys. Chem. B 103(13), 2327–2346.CrossRefGoogle Scholar
  10. 10.
    A. W. Roszak, T. D. Howard, J. Southall, A. T. Gardiner, C. J. Law, N. W. Isaacs, and R. J. Cogdell (2003). Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302, 1969–1972.PubMedCrossRefGoogle Scholar
  11. 11.
    B. P. Krueger, G. D. Scholes, I. R. Gould, and G. R. Fleming (1999). Carotenoid mediated B800–B850 coupling in LH2. Phys. Chem. Comm. 8, 34–40.Google Scholar
  12. 12.
    Z. Katiliene, E. Katilius, G. H. Uyeda, J. C. Williams, and N. W. Woodbury (2004). Increasing the rate of energy transfer between the LH1 antenna and the reaction center in the photosynthetic bacterium Rhodobacter sphaeroides. J. Phys. Chem. B 108(12), 3863–3870.CrossRefGoogle Scholar
  13. 13.
    X. Hu, A. Damjanovik, T. Ritz, and K. Schulten (1998). Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc. Natl. Acad. Sci. USA 95, 5935–5941.PubMedCrossRefGoogle Scholar
  14. 14.
    H.-M. Wu, M. Rätsep, R. Jankowiak, R. J. Cogdell, and G. J. Small (1998). Hole-burning and absorption studies of the LH1 antenna complex of purple bacteria: Effects of pressure and temperature. J. Phys. Chem. B 102(20), 4023–4034.CrossRefGoogle Scholar
  15. 15.
    T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming (2005). Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434(7033), 625–628.PubMedCrossRefGoogle Scholar
  16. 16.
    A. Bar-Haim and J. Klafter (1998). Dendrimers as light harvesting antennae. J. Lumin. 76–7, 197–200.CrossRefGoogle Scholar
  17. 17.
    A. Bar-Haim and J. Klafter (1998). Geometric versus energetic competition in light harvesting by dendrimers. J. Phys. Chem. B 102(10), 1662–1664.CrossRefGoogle Scholar
  18. 18.
    S. Tretiak, V. Chernyak, and S. Mukamel (1998). Localized electronic excitations in phenylacetylene dendrimers. J. Phys. Chem. B 102(18), 3310–3315.CrossRefGoogle Scholar
  19. 19.
    S. F. Swallen, Z. Y. Shi, W. H. Tan, Z. F. Xu, J. S. Moore, and R. Kopelman (1998). Exciton localization hierarchy and directed energy transfer in conjugated linear aromatic chains and dendrimeric supermolecules. J. Lumin. 76–77, 193–196.CrossRefGoogle Scholar
  20. 20.
    A. Adronov and J. M. J. Frechet (2000). Light-harvesting dendrimers. Chem. Commun. (18), 1701–1710.Google Scholar
  21. 21.
    C. Devadoss, P. Bharathi, and J. S. Moore (1996). Energy transfer in dendritic macromolecules: Molecular size effects and the role of an energy gradient. J. Am. Chem. Soc. 118(40), 9635–9644.CrossRefGoogle Scholar
  22. 22.
    M. R. Shortreed, S. F. Swallen, Z. Y. Shi, W. H. Tan, Z. F. Xu, C. Devadoss, J. S. Moore, and R. Kopelman (1997). Directed energy transfer funnels in dendrimeric antenna supermolecules. J. Phys. Chem. B 101(33), 6318–6322.CrossRefGoogle Scholar
  23. 23.
    U. Hahn, M. Gorka, F. Vögtle, V. Vicinelli, P. Ceroni, M. Maestri, and V. Balzani (2002). Light-harvesting dendrimers: Efficient intra- and intermolecular energy-transfer processes in a species containing 65 chromophoric groups of four different types. Angew. Chem. Int. Ed. 41(19), 3595–3598.CrossRefGoogle Scholar
  24. 24.
    F. Würthner and A. Sautter (2003). Energy transfer in multichromophoric self-assembled molecular squares. Org. Biomol. Chem. 1(2), 240–243.PubMedCrossRefGoogle Scholar
  25. 25.
    P. Furuta, J. Brooks, M. E. Thompson, and J. M. J. Frechet (2003). Simultaneous light emission from a mixture of dendrimer encapsulated chromophores: A model for single-layer multichromophoric organic light-emitting diodes. J. Am. Chem. Soc. 125(43), 13165–13172.PubMedCrossRefGoogle Scholar
  26. 26.
    N. Nishiyama, H. R. Stapert, G. D. Zhang, D. Takasu, D. L. Jiang, T. Nagano, T. Aida, and K. Kataoka (2003). Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy. Bioconjug. Chem. 14(1), 58–66.PubMedCrossRefGoogle Scholar
  27. 27.
    G. Juzeliunas and D. L. Andrews (1999). In D. L. Andrews and A. A. Demidov (Eds.), Resonance Energy Transfer, Wiley, Chichester, pp. 65–107.Google Scholar
  28. 28.
    B. Wieb van der Meer (1999). In D. L. Andrews and A. A. Demidov (Eds.), Resonance Energy Transfer, Wiley, Chichester, pp. 151–172.Google Scholar
  29. 29.
    D. L. Andrews and A. M. Bittner (1993). Energy-transfer in a static electric-field. J. Lumin. 55(5–6), 231–242.CrossRefGoogle Scholar
  30. 30.
    G. J. Daniels and D. L. Andrews (2002). The electronic influence of a third body on resonance energy transfer (vol. 116, p. 6701, 2002). J. Chem. Phys. 117(14), 6882(E)–6893.CrossRefGoogle Scholar
  31. 31.
    P. Allcock, R. D. Jenkins, and D. L. Andrews (2000). Laser-assisted resonance-energy transfer. Phys. Rev. A 6102(2), 023812.CrossRefGoogle Scholar
  32. 32.
    A. Aviram (1988). Molecules for memory, logic, and amplification. J. Am. Chem. Soc. 110, 5687–5692.CrossRefGoogle Scholar
  33. 33.
    J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour (1999). Large on–off ratios and negative differential resistance in a molecular electronic device. Science 286(5444), 1550–1552.PubMedCrossRefGoogle Scholar
  34. 34.
    Z. Q. Yang, N. D. Lang, and M. Di Ventra (2003). Effects of geometry and doping on the operation of molecular transistors. Appl. Phys. Lett. 82(12), 1938–1940.CrossRefGoogle Scholar
  35. 35.
    M. Alvaro, M. N. Chretien, B. Ferrer, V. Fornes, H. Garcia, and J. C. Scaiano (2001). First molecular switch encapsulated within the cavities of a zeolite. A dramatic lifetime increase of the charge-separated state. Chem. Commun. (20), 2106–2107.Google Scholar
  36. 36.
    E. M. Just and M. R. Wasielewski (2000). Picosecond molecular switch based on the influence of photogenerated electric fields on optical charge transfer transitions. Superlattices Microstruct. 28(4), 317–328.CrossRefGoogle Scholar
  37. 37.
    S. Sangu, K. Kobayashi, A. Shojiguchi, T. Kawazoe, and M. Ohtsu (2003). Excitation energy transfer and population dynamics in a quantum dot system induced by optical near-field interaction. J. Appl. Phys. 93(5), 2937–2945.CrossRefGoogle Scholar
  38. 38.
    O. Wada (2004). Femtosecond all-optical devices for ultrafast communication and signal processing. New J. Phys. 6, 183.CrossRefGoogle Scholar
  39. 39.
    B. S. Ham (2001). A novel method of all-optical switching: Quantum router. ETRI J. 23(3), 106–110.Google Scholar
  40. 40.
    D. L. Andrews and R. G. Crisp (in press), Optically-activated energy transfer: Array implementation, J. Opt. A: Pure Appl. Opt. Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Nanostructures and Photomolecular Systems, School of Chemical SciencesUniversity of East AngliaNorwichUK

Personalised recommendations