Advertisement

Journal of Fluorescence

, Volume 16, Issue 1, pp 27–33 | Cite as

Time-Resolved Detection of Hot Electron-Induced Electrochemiluminescence of Fluorescein in Aqueous Solution

  • Tiina Ylinen
  • Johanna Suomi
  • Mika Helin
  • Timo Ala-Kleme
  • Sakari Kulmala
Original Article

Strong electrogenerated chemiluminescence (ECL) of fluorescein is generated during cathodic pulse polarization of oxide-covered aluminum electrodes and the resulting decay of emission is so sluggish that time-resolved detection of fluorescein is feasible. The present ECL in aqueous solution is based on the tunnel emission of hot electrons into the aqueous electrolyte solution, which probably results in the generation of hydrated electrons and hydroxyl radicals acting as redox mediators. The successive one-electron redox steps with the primary radicals result in fluorescein in its lowest excited singlet state. The method allows the detection of fluorescein (or its derivatives containing usable linking groups to biomolecules) over several orders of magnitude of concentration with detection limits well below nanomolar concentration level. The detection limits can still be lowered, e.g., by addition of azide or bromide ions as coreactants. The results suggest that the derivatives of fluorescein, such as fluorescein isothiocyanate (FITC), can be detected by time-resolved measurements and thus be efficiently used as electrochemiluminescent labels in bioaffinity assays.

KEY WORDS:

electrogenerated chemiluminescence ECL time-resolved detection fluorescein FITC hot electron oxide-covered aluminum electrode 

REFERENCES

  1. 1.
    S. Kulmala, A. Kulmala, T. Ala-Kleme, and J. Pihlaja (1998). Primary cathodic steps of electrogenerated chemiluminescence of lanthanide(III) chelates at oxide-covered aluminum electrodes in aqueous solution. Anal. Chim. Acta 367(1–3), 17–31.CrossRefGoogle Scholar
  2. 2.
    S. Kulmala, M. Hakansson, A.-M. Spehar, A. Nyman, J. Kankare, K. Loikas, T. Ala-Kleme, and J. Eskola (2002). Heterogeneous and homogeneous electrochemiluminoimmunoassays of hTSH at disposable oxide-covered aluminum electrodes, Anal. Chim. Acta 458(2), 271–280.CrossRefGoogle Scholar
  3. 3.
    M. Helin, L. Väre, M. Håkansson, P. Canty, H.-P. Hedman, L. Heikkilä, T. Ala-Kleme, J. Kankare, and S. Kulmala (2002). Electrochemiluminoimmunoassay of hTSH at disposable oxide-coated n-silicon electrodes, J. Electroanal. Chem. 524/525, 176–183.CrossRefGoogle Scholar
  4. 4.
    P. Canty, L. Väre, M. Håkansson, A.-M. Spehar, D. Papkovsky, T. Ala-Kleme, J. Kankare, and S. Kulmala (2002). Time-resolved electrochemiluminescence of platinum(II) coproporphyrin, Anal. Chim. Acta 453(2), 269–279.CrossRefGoogle Scholar
  5. 5.
    S. Kulmala, T. Ala-Kleme, M. Latva, K. Loikas, and H. Takalo (1998). Hot electron-induced electrogenerated chemiluminescence of rare earth(III) chelates at oxide-covered aluminum electrodes, J. Fluoresc. 8(1), 59–65.CrossRefGoogle Scholar
  6. 6.
    Q. Jiang, M. Håkansson, A.-M. Spehar, J. Ahonen, T. Ala-Kleme, and S. Kulmala (in press). Hot electron-induced time-resolved electrogenerated chemiluminescence of a europium(III) label in fully aqueous solutions. Anal. Chim. Acta Google Scholar
  7. 7.
    J. S. Poole, C. M. Hadad, M. S. Platz, Z. P. Fredin, L. Pickard, E. L. Guerrero, M. Kessler, G. Chowdhury, D. Kotandeniya, and K. S. Gates (2002). Photochemical electron transfer reactions of tirapazamine. Photochem. Photobiol. 75(4), 339–345.CrossRefPubMedGoogle Scholar
  8. 8.
    S. Kulmala and J. Suomi (2003). Current status of modern analytical luminescence methods. Anal. Chim. Acta 500(1–2), 21–69.CrossRefGoogle Scholar
  9. 9.
    K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano (2001). Rational design of fluorescein-based fluorescent probes. Mechanism-based design of a maximumfluorescence probe for singlet oxygen. J. Am. Chem. Soc. 123(11), 2530–2536.CrossRefPubMedGoogle Scholar
  10. 10.
    B. Ou, M. Hampsch-Woodill, and R. L. Prior (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 49(10), 4619–4626.CrossRefPubMedGoogle Scholar
  11. 11.
    B. Ou, M. Hampsch-Woodill, J. Flanagan, E. K. Deemer, R. L. Prior, and D. Huang (2002). Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein as the probe. J Agric. Food Chem. 50(10), 2772–2777.CrossRefPubMedGoogle Scholar
  12. 12.
    J. Nikokavouras, C. Papadopoulos, A. Perry, and G. Vassilopoulos (1976). Chemiluminescence of a luminol-fluorescein amide. Chim. Chron. 5(3), 223–229.Google Scholar
  13. 13.
    A. Kahn and M. Kasha (1966). Physical theory of chemiluminescence in systems evolving molecular oxygen. J. Am. Chem. Soc. 88(7), 1574–1576.CrossRefGoogle Scholar
  14. 14.
    J. Hadjianestis and J. Nikokavouras (1992). Luminol chemiluminescence in micellar media: Energy transfer to fluorescein, J. Photochem. Photobiol. A 69(3), 337–343.CrossRefGoogle Scholar
  15. 15.
    M. Voicescu, M. Vasilescu, and A. Meghea (2000). Energy transfer from the aminophtalate dianion to fluorescein. J. Fluoresc. 10(3), 229–236.CrossRefGoogle Scholar
  16. 16.
    J. Burguera and A. Townshend (1980). Determination of ng/ml levels of sulphide by a chemiluminescent reaction. Talanta 27(4), 309–314.CrossRefPubMedGoogle Scholar
  17. 17.
    W. Pruetz, K. Sommermeyer, and E. Land (1966). Light emission after pulse radiolysis of aqueous solution of dyes. Nature 212(5066), 1043–1044.CrossRefGoogle Scholar
  18. 18.
    W. Pruetz and E. Land (1967). Phosphorescence of aqueous dye solutions after irradiation with electron pulses. Biophysik 3(4), 349–360.CrossRefPubMedGoogle Scholar
  19. 19.
    S. Kulmala, T. Ala-Kleme, L. Heikkilä, and L. Väre (1997). Energetic electrochemiluminescence of (9-fluorenyl)methanol induced by injection of hot electrons into aqueous electrolyte solution. J. Chem. Soc. Faraday Trans. 93(17), 3107–3113.CrossRefGoogle Scholar
  20. 20.
    T. Ala-Kleme, S. Kulmala, and M. Latva (1997). Generation of free radicals and electrochemiluminescence at pulse-polarized oxide-covered silicon electrodes in aqueous solutions, Acta. Chem. Scand. 51(5), 541–546.Google Scholar
  21. 21.
    S. Kulmala, T. Ala-Kleme, H. Joela, and A. Kulmala (1998). Hot electron injection into aqueous electrolyte solution from thin insulating film-coated electrodes. J. Radioanal. Nucl. Chem. 232(1/2), 91–95.CrossRefGoogle Scholar
  22. 22.
    M. Håkansson, Q. Jiang, M. Helin, M. Putkonen, A. J. Niskanen, S. Pahlberg, T. Ala-Kleme, L. Heikkilä, J. Suomi, and S. Kulmala (2005). Cathodic Tb(III) chelate electrochemiluminescence at oxide-covered magnesium and n-ZnO:Al/MgO composite electrodes, Electrochim. Acta. 51(2), 289–296.Google Scholar
  23. 23.
    G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross (1988). Critical Review of rate constants for reactions of hydrated electrons. Chemical Kinetic Data Base for Combustion Chemistry. Part 3: Propane. J. Phys. Chem. Ref. Data 17(2), 513–886.Google Scholar
  24. 24.
    T. Ala-Kleme, S. Kulmala, L. Väre, P. Juhala, and M. Helin (1999). Hot Electron-Induced Electrogenerated Chemiluminescence of Ru(bpy)3 2+ Chelate at Oxide-Covered Aluminum Electrodes, Anal. Chem. 71(24), 5538–5543.Google Scholar
  25. 25.
    S. Kulmala, T. Ala-Kleme, A. Kulmala, D. Papkovsky, and K. Loikas (1998). Cathodic electrogenerated chemiluminescence of luminol at disposable oxide-covered aluminum electrodes, Anal. Chem. 70(6), 1112–1118.Google Scholar
  26. 26.
    M. Helin, Q. Jiang, H. Ketamo, M. Håkansson, A.-M. Spehar, S. Kulmala, and T. Ala-Kleme (2005). Electrochemiluminescence of coumarin derivatives induced by injection of hot electrons into aqueous electrolyte solution, Electrochim. Acta. 51(4), 725–730.Google Scholar
  27. 27.
    D. Arnold, E. Cartier, and D. DiMaria (1994). Theory of high-field electron transport and impact ionization in silicon dioxide, Phys. Rev. B 49(15), 10278–10297.CrossRefGoogle Scholar
  28. 28.
    D. DiMaria and M. Fischetti (1988). Vacuum emission of hot electrons from silicon dioxide at low temperatures, J. Appl. Phys. 64(9), 4683–4691.CrossRefGoogle Scholar
  29. 29.
    D. DiMaria and E. Cartier (1995). Mechanism for stress-induced leakage currents in thin silicon dioxide films, J. Appl. Phys. 78(6), 3883–3894.CrossRefGoogle Scholar
  30. 30.
    J. Kankare, K. Fälden, S. Kulmala, and K. Haapakka (1992). Cathodically induced time-resolved lanthanide(III) electroluminescence at stationary aluminum disk electrodes, Anal. Chim. Acta 256(1), 17–28.CrossRefGoogle Scholar
  31. 31.
    S. Tajima (1977). Luminescence, breakdown and colouring of anodic oxide films on aluminum, Electrochim. Acta 22(9), 995–1011.Google Scholar
  32. 32.
    A. Despic and V. Parkhutik (1989). In J. Bockris, R. White, and B. Conway (Eds.). Modern Aspects of Electrochemistry, Vol. 20, Plenum, New York, pp. 400–503, and the references cited therein.Google Scholar
  33. 33.
    W. A. Pruetz and E. J. Land (1974), Chemiluminescent reactions after pulse radiolysis of aqueous dye solutions. Absolute yields. J. Phys. Chem. 78(13). 1251–1253.CrossRefGoogle Scholar
  34. 34.
    Q. Jiang, M. Kotiranta, K. Langel, J. Suomi, M. Håkansson, A.-M. Spehar, T. Ala-Kleme, J. Eskola, and S. Kulmala (2005), Ruthenium(II) tris(2,2′-bipyridine) chelate as a chemiluminophore in extrinsic lyoluminescences of aluminum and magnesium in aqueous solution. Anal. Chim. Acta 541(1–2), 177–184.CrossRefGoogle Scholar
  35. 35.
    W. Koppenol and J. Butler (1985). Energetics of interconversion reactions of oxyradicals, Adv. Free Rad. Biol. Med. 1(1), 91–131.CrossRefGoogle Scholar
  36. 36.
    D. Stanbury (1989). Reduction potentials involving inorganic free radicals in aqueous solution. Adv. Inorg. Chem. 33, 69–138.CrossRefGoogle Scholar
  37. 37.
    W. Koppenol (1987), Thermodynamics of reactions involving oxyradicals and hydrogen peroxide, Bioelectrochem. Bioenerg 18(1–3). 3–11.CrossRefGoogle Scholar
  38. 38.
    P. Neta (1976), Application of radiation techniques to the study of organic radicals, Adv. Phys. Org. Chem. 12, 223–297.Google Scholar
  39. 39.
    R. Brooke, R. Bisby, and F. Ismail (2004). Characterisation and quantification of phenolic antioxidants using the “Oxygen Radical Absorbance Capacity” (ORAC) assay for antioxidants. Free Radicals and Excited States in Aqueous and Non-Aqueous Solutions, 27th–29th October 2004, p. 4., CCLRC Daresbury Laboratory.Google Scholar
  40. 40.
    P. Cordier and L. I. Grossweiner (1968). Pulse radiolysis of aqueous fluorescein, J. Phys. Chem. 72(6), 2018–2026.CrossRefGoogle Scholar
  41. 41.
    P. S. Rao and E. J. Hayon (1973). Reduction of dyes by free radicals in solution. Correlation between reaction rate constants and redox potentials. J. Phys. Chem. 77(23), 2753–2756.CrossRefGoogle Scholar
  42. 42.
    P. Neta, R. E. Huie, and A. B. Ross (1988). Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys Chem. Ref. Data 17(3), 1027–1284.Google Scholar
  43. 43.
    J. Kankare, K. Haapala, S. Kulmala, V. Näntö, J. Eskola, and H. Takalo (1992). Immunoassay by time-resolved electrogenerated luminescence, Anal. Chim. Acta 266(2), 205–212.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Tiina Ylinen
    • 1
  • Johanna Suomi
    • 1
  • Mika Helin
    • 1
  • Timo Ala-Kleme
    • 2
  • Sakari Kulmala
    • 1
  1. 1.Laboratory of Analytical and Inorganic ChemistryHelsinki University of TechnologyHelsinkiFinland
  2. 2.Laboratory of Analytical Chemistry, Department of ChemistryUniversity of TurkuHelsinkiFinland

Personalised recommendations