Skip to main content
Log in

The Essential Requirements of Transition to Non-equilibrium Burn Stage of DD Fuel in Simple Spherical Targets

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In this research, the transition from equilibrium ignition to non-equilibrium burn is evaluated by calculating the energy balance equations analytically for targets which consist of inner DD fuel and surrounded by a high-Z pusher. It is expected that these targets can trap much of the produced charged particles, radiation or even fast neutrons because of their high-Z pusher. Accordingly, DD fuel can be ignited in volume ignition regime with low ignition temperatures of 35 keV compared to central ignition. Thus, to get a non-equilibrium burning stage, we have examined all the important gain and loss processes for these targets as the energy deposition of fusion products, thermal conduction, radiation flux, mechanical work, bremsstrahlung radiation and inverse Compton scattering as well as competition among them. These conditions have investigated for different areal densities of DD fuel in ρR ~ 1–100 g/cm2 and it is shown that as areal density rises, transition temperature decreases. But at high areal densities, the transition temperature does not vary significantly and the limiting temperature of ~ 20 keV will be obtained. Also, transition into non-equilibrium burn is studied for such cases that thermonuclear burn occurs at stagnation moment, before and after that. It is observed that the positive and negative role of mechanical work on the transition conditions is very important and varies transition temperature remarkably. In all cases, transition temperature to non-equilibrium burn phase is always much lower than ideal ignition temperature in specific areal density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Nakai, H. Takabe, Rep. Prog. Phys. 59(9), 1071 (1996)

    Article  ADS  Google Scholar 

  2. R.S. Craxton, K.S. Anderson, T.R. Boehly, V.N. Goncharov, D.R. Harding, J.P. Knauer, R.L. McCrory, P.W. McKenty, D.D. Meyerhofer, J.F. Myatt, A.J. Schmitt, J.D. Sethian, R.W. Short, S. Skupsky, W. Theobald, W.L. Kruer, K. Tanaka, R. Betti, T.J.B. Collins, J.A. Delettrez, S.X. Hu, J.A. Marozas, A.V. Maximov, D.T. Michel, P.B. Radha, S.P. Regan, T.C. Sangster, W. Seka, A.A. Solodov, J.M. Soures, C. Stoeckl, J.D. Zuegel, Phys. Plasmas 22(11), 110501 (2015)

    Article  ADS  Google Scholar 

  3. S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Beam Plasma Interaction, Hydrodynamics and Hot Dense Matter, 1st edn. (Clarendon Press-Oxford, New York, 2004), pp. 32–33, 78–80

    Chapter  Google Scholar 

  4. R.E. Kidder, Nucl. Fusion 14(6), 797 (1974)

    Article  ADS  Google Scholar 

  5. H. Hora, P.S. Ray, Zeitschrift für Naturforschung A 33(8), 890 (1978)

    Article  ADS  Google Scholar 

  6. J. Meyer-ter-Vehn, Nucl. Fusion 22(4), 561 (1982)

    Article  Google Scholar 

  7. J.D. Lindl, Il Nouvo Cimento A 106(11), 1467 (1993)

    Article  ADS  Google Scholar 

  8. S. Eliezer, J.M. Martinez-Val, M. Piera, H. Hora, AIP Conf. Proc. 318(1), 345 (1994)

    Article  ADS  Google Scholar 

  9. P.E. Stott, Plasma Phys. Control. Fusion 47(8), 1305 (2005)

    Article  ADS  Google Scholar 

  10. N.A. Tahir, D.H.H. Hoffmann, Fusion Technol. 33, 164 (1998)

    Article  Google Scholar 

  11. G. Velarde, Y. Ronen, J.M. Martinez-Val, Nuclear Fusion by Inertial Confinement: A Comprehensive Treatise, 1st edn. (CRC Press, Boca Raton, 1992), pp. 8–11

    Google Scholar 

  12. S. Eliezer, P.T. Leon, J.M. Martinez-Val, D. Fisher, Laser Part. Beams 21(4), 599 (2003)

    Article  ADS  Google Scholar 

  13. F. Ogando, P. Velarde, J. Quant. Spectrosc. Radiat. Transf. 71, 541 (2001)

    Article  ADS  Google Scholar 

  14. T. Johzaki, Y. Nakao, M. Murakami, K. Nishihara, H. Nakashima, K. Kudo, AIP Conf. Proc. 406(1), 149 (1997)

    ADS  Google Scholar 

  15. T. Johzaki, Y. Nakao, M. Murakami, K. Nishihara, Nucl. Fusion 38(3), 467 (1998)

    Article  ADS  Google Scholar 

  16. J.M. Martinez-Val, S. Eliezer, M. Piera, Laser Part. Beams 12(4), 681 (1994)

    Article  ADS  Google Scholar 

  17. G. Kasotakis, L. Cicchitelli, H. Hora, R.J. Stening, Laser Part. Beams 1(3), 511 (1989)

    Article  ADS  Google Scholar 

  18. M. Murakami, Nucl. Fusion 37(4), 549 (1997)

    Article  ADS  Google Scholar 

  19. R. Khoda-Bakhsh, H. Hora, G.H. Miley, R.J. Stening, P. Pieruschka, Fusion Technol. 22, 50 (1992)

    Article  Google Scholar 

  20. H. Hora, S. Eliezer, J.M. Martinez-Val, G.H. Miley, AIP Conf. Proc. 318(1), 325 (1994)

    Article  ADS  Google Scholar 

  21. R.C. Kirkpatrick, J.A. Wheeler, Nucl. Fusion 21(3), 389 (1981)

    Article  ADS  Google Scholar 

  22. R.C. Kirkpatrick, Nucl. Fusion 21(11), 1457 (1981)

    Article  Google Scholar 

  23. K.S. Lackner, S.A. Colgate, N.L. Johnson, R.C. Kirkpatrick, R. Menikoff, A.G. Petschek, AIP Conf. Proc. 318, 356 (1994)

    Article  ADS  Google Scholar 

  24. M.M. Basko, Laser Part. Beams 11(4), 733 (1993)

    Article  ADS  Google Scholar 

  25. W. Ji, L. Li, Y.S. Chang, J.H. Li, Li. Nucl. Fusion 51(6), 063005 (2011)

    Article  ADS  Google Scholar 

  26. K.A. Brueckner, S. Jorna, Rev. Mod. Phys. 46(2), 325 (1974)

    Article  ADS  Google Scholar 

  27. G.S. Fraley, E.J. Linnebur, J.R. Mason, R.L. Morse, Phys. Fluids 17(2), 474 (1974)

    Article  ADS  Google Scholar 

  28. A. Caruso, Plasma Phys. 16, 683 (1974)

    Article  ADS  Google Scholar 

  29. S. Atzeni, Jpn. J. Appl. Phys. 34(4A), 1980 (1995)

    ADS  Google Scholar 

  30. S. Ido, S. Tazima, Jpn. J. Appl. Phys. 22(7), 1194 (1983)

    Article  ADS  Google Scholar 

  31. A.M. Frolov, Plasma Phys. Control. Fusion 40(8), 1417 (1998)

    Article  ADS  Google Scholar 

  32. M.M. Basko, Nucl. Fusion 30(12), 2443 (1990)

    Article  MathSciNet  Google Scholar 

  33. A.M. Frolov, V.H. Smith, G.T. Smith, Can. J. Phys. 80, 43 (2002)

    Article  ADS  Google Scholar 

  34. B. Nayak, S.V.G. Menon, Laser Part. Beams 30(4), 517 (2012)

    Article  ADS  Google Scholar 

  35. S. Eliezer, Z. Henis, J.M. Martinez-Val, I. Vorobeichik, Nucl. Fusion 40(2), 195 (2000)

    Article  ADS  Google Scholar 

  36. S. Eliezer, A. Ravid, Z. Henis, N. Nissim, J.M. Martinez-Val, Laser Part. Beams 34(2), 343 (2016)

    Article  ADS  Google Scholar 

  37. J.J. Duderstadt, G.A. Moses, Inertial Confinement Fusion (Wiley, New York, 1982), pp. 55–56, 103–107

  38. Ya.B. Zeldovich, Yu.P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, 1st edn. (Academic Press, New York, 1966), pp. 151–154, 347–348

  39. A.H. Khalfaoui, D. Bennaceur, Phys. Plasmas 4(12), 4409 (1997)

    Article  ADS  Google Scholar 

  40. C.D. Zhou, R. Betti, Phys. Plasmas 15, 102707 (2008)

    Article  ADS  Google Scholar 

  41. S. Eliezer, Z. Henisa, J.M. Martinez-Val, M. Piera, Phys. Lett. A 243, 311 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghasemizad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabnejad, M., Ghasemizad, A. & Khoshbinfar, S. The Essential Requirements of Transition to Non-equilibrium Burn Stage of DD Fuel in Simple Spherical Targets. J Fusion Energ 37, 291–300 (2018). https://doi.org/10.1007/s10894-018-0200-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-018-0200-3

Keywords

Navigation