Skip to main content
Log in

A Numerical Study of Cracks Appearance on Tungsten Surface After High Intense Pulsed Ion Beam Irradiation

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Due to the outstanding physical properties, Tungsten has been proposed for use in the divertor of future fusion devices. However, tungsten shall face strong particle bombardment from the plasma, which causes severe damage to the material. The purpose of this work is to build such an accurate analytical model which can predict the damages in target material like crack production and propagation after high intense pulsed ion beam irradiation. Hence, a two-dimensional finite element method is used to study the effect of high intense pulsed ion beam on tungsten surface numerically. To judge temperature and stress distribution in material, thermal conduction model is combined with non-linear fracture mechanics model and J-Integral parameter is used as a criterion to judge the crack propagation. Simulation results reveal that different crack heights and sizes can affect the results and there is a critical depth for crack propagation. The model gives good results to real experimental observations and has potential applications for different intense pulsed electron/plasma beams and different target materials as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Li, E. Werner, J.H. Yu, Nucl. Mater. Energy 2, 1–11 (2015)

    Article  ADS  Google Scholar 

  2. M. Rieth, S.L. Dudarev, S.M. Gonzalez De Vicente, J. Aktaa, T. Ahlgren, S. Antusch, A. Zivelonghi, J. Nucl. Mater. 432(1–3), 482–500 (2013)

    Article  ADS  Google Scholar 

  3. D.J. Rej, H.A. Davis, J.C. Olson, G. Remnev, A.N. Zakoutaev, V.A. Ryzhkov, W. Jiang, J. Vac. Sci. Technol., A 15(3), 1089–1097 (1997)

    Article  ADS  Google Scholar 

  4. X.Y. Le, W.J. Zhao, S. Yan, B.X. Han, W. Xiang, Surf. Coat. Technol. 158–159, 14–20 (2002)

    Article  Google Scholar 

  5. G.E. Remnev, V.V. Uglov, V.I. Shymanski, S.K. Pavlov, A.K. Kuleshov, Appl. Surf. Sci. 310, 204–209 (2014)

    Article  ADS  Google Scholar 

  6. K. Yatsui, C. Grigoriu, H. Kubo, K. Masugata, Y. Shimotori, Appl. Phys. Lett. 67, 1214 (1995)

    Article  ADS  Google Scholar 

  7. D.J. Rej, H.A. Davis, M. Nastasi, J.C. Olson, E.J. Peterson, R.D. Reiswig, V.K. Struts, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 127–128(97), 987–991 (1997)

    Article  ADS  Google Scholar 

  8. G.E. Remnev, V.A. Shulov, Laser Part. Beams 11(4), 707–731 (1993)

    Article  ADS  Google Scholar 

  9. G.E. Remnev, V.V. Uglov, V.I. Shymanski, S.K. Pavlov, A.K. Kuleshov, Appl. Surf. Sci. 310, 204–209 (2014)

    Article  ADS  Google Scholar 

  10. X. Liu, X. Mei, J. Qiang, G.E. Remnev, Y. Wang, Appl. Surf. Sci. 313, 911–917 (2014)

    Article  Google Scholar 

  11. X. Mei, X. Zhang, X. Liu, Y. Wang, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 697–702 (2017)

    Article  ADS  Google Scholar 

  12. X.K. Zhu, J.A. Joyce, Eng. Fract. Mech. 85, 1–46 (2012)

    Article  Google Scholar 

  13. C.E. Turner, O. Kolednik, Fatigue Fract. Eng. Mater. Struct. 17(9), 1089–1107 (1994)

    Article  Google Scholar 

  14. O. Kolednik, H.P. Stüwe, Eng. Fract. Mech. 21(1), 145–155 (1985)

    Article  Google Scholar 

  15. X.K. Zhu, J.A. Joyce, Eng. Fract. Mech. 85, 1–46 (2012)

    Article  Google Scholar 

  16. R. Kolednik, T.E.D. Rate, Fatiuge Fract. Mech., 27th volume, ASTM STP I296 (1997)

  17. A. Manhard, M. Balden, S. Elgeti, Pract Metallogr. 52, 1–20 (2015)

    Article  Google Scholar 

  18. Y. Gao, Y. Qin, C. Dong, G. Li, Appl. Surf. Sci. 311, 413–421 (2014)

    Article  ADS  Google Scholar 

  19. N.J. Dutta, N. Buzarbaruah, S.R. Mohanty, J. Nucl. Mater. 452(1–3), 51–56 (2014)

    Article  ADS  Google Scholar 

  20. M. Bhuyan, S.R. Mohanty, C.V.S. Rao, P.A. Rayjada, P.M. Raole, Appl. Surf. Sci. 264, 674–680 (2013)

    Article  ADS  Google Scholar 

  21. N.P. Bailey, J.P. Sethna (2003). http://dx.doi.org/10.1103/PhysRevB.68.205204

  22. N.K. Simha, F.D. Fischer, G.X. Shan, C.R. Chen, O. Kolednik, J. Mech. Phys. Solids 56(9), 2876–2895 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. J.F. Ziegler, F. James, J.P. Biersack, M.D. Ziegler (2008). https://doi.org/10.1016/j.nimb.2004.01.208.4

  24. Y. Ozaki, R.H. Zee, J. Mater. Sci. Eng. A 202(1–2), 134–141 (1995)

    Article  Google Scholar 

  25. A. Giannattasio, S.G. Roberts, Phil. Mag. 87(17), 2589–2598 (2007)

    Article  ADS  Google Scholar 

  26. J.W. Hutchinson, J. Mech. Phys. Solids 16(5), 337–342 (1968)

    Article  ADS  Google Scholar 

  27. S.B. Brown, K.H. Kim, L. Anand, Int. J. Plast. 5(2), 95–130 (1989)

    Article  Google Scholar 

  28. K.C. Otiaba, R.S. Bhatti, N.N. Ekere, S. Mallik, M. Ekpu, Eng. Fail. Anal. 28, 192–207 (2013)

    Article  Google Scholar 

  29. L. Zhang, S. Xue, L. Gao, G. Zeng, Z. Sheng, Y. Chen, S. Yu, Model. Simul. Mater. Sci. Eng. 17(7), 075014 (2009)

    Article  ADS  Google Scholar 

  30. L. Anand, Int. J. Plast. 1(3), 213–231 (1985)

    Article  Google Scholar 

  31. J. Marsh, Y.S. Han, D. Verma, V. Tomar, Int. J. Plast. 74, 127–140 (2015)

    Article  Google Scholar 

  32. J.R. Rice, J. Appl. Mech. 35(2), 379 (1968)

    Article  ADS  Google Scholar 

  33. N.K. Simha, F.D. Fischer, G.X. Shan, C.R. Chen, O. Kolednik, J. Mech. Phys. Solids 56(9), 2876–2895 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. D. Rupp, S.M. Weygand, J. Nucl. Mater. 386–388(C), 591–593 (2009)

    Article  ADS  Google Scholar 

  35. D. Rupp, S.M. Weygand, J. Nucl. Mater. 417(1–3), 477–480 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Contract No. 11175012), China Postdoctoral Science Foundation (Grant No. 2016M600897 and Magnetic Confinement Fusion Program (Grant No. 2013GB109004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Le.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid, I., Shen, J., Yu, X. et al. A Numerical Study of Cracks Appearance on Tungsten Surface After High Intense Pulsed Ion Beam Irradiation. J Fusion Energ 37, 261–269 (2018). https://doi.org/10.1007/s10894-018-0186-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-018-0186-x

Keywords

Navigation