Skip to main content
Log in

Study on the Chemical Compatibility Study Between Li2TiO3 Pebbles and 14Cr-ODS Steel

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In order to investigate the chemical compatibility between tritium breeder Li2TiO3 pebbles and tritium breeder blanket material oxide dispersion strengthened (ODS) steel, the contact interface between Li2TiO3 pebbles and ODS steel heated in argon atmosphere at 500, 600 and 700 °C for 300 h was studied. It was found that the ions of pebbles could diffuse and corrode with the cladding material after a long-time reaction at high temperature. The corrosion area formed on the surface of Li2TiO3 pebbles was small. With the increase of temperature, a zone with enriched iron was found on the surface of the pebble. This part of the surface was the direct contact surface between the pebble and the steel. At the same time, the relative density of the pebbles increased and the crush load was decreased to 30 N. In addition, a slight corrosion phenomenon was found on the surface of ODS steel. It has been proved that the main components of the corrosion products were the complex oxide containing Fe and Cr and the complex oxide containing Li and Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Hamacher, A.M. Bradshaw, Congress 120, 577–578 (2001)

    Google Scholar 

  2. J.P. Holden, Rev. Energy Environ. 16, 235–258 (1991)

    Article  Google Scholar 

  3. J. Raeder et al., J. Safety and Environmental Assessment of Fusion Power (SEAFP), report EURFUBRU XII-217/95, European Commission, Brussels, 1995

  4. B. Bornschein, C. Day et al., Fusion Eng. Des. 88(6–8), 466–471 (2013)

    Article  Google Scholar 

  5. Y. Wu, T.F. Team, Nucl. Fusion 47(11), 1533 (2007)

    Article  ADS  Google Scholar 

  6. A. Hishinuma, A. Kohyama et al., J. Nucl. Mater. 258–263, 193–204 (1998)

    Article  ADS  Google Scholar 

  7. M. Broc, T. Flament et al., J. Nucl. Mater. 155(88), 710–714 (1988)

    Article  ADS  Google Scholar 

  8. J.P. Qian, K.Z. Sun et al., Nucl. Power Eng. 17(6), 221–226 (1994)

    Google Scholar 

  9. P. Agostini, G. Benamati, Fusion Eng. Des. 17, 193–197 (1991)

    Article  Google Scholar 

  10. F.L. Tabarés, Plasma Phys. Controlled Fusion 58(1), 014 (2016)

    Article  Google Scholar 

  11. C.E. Johnson, K.R. Kummerer et al., J. Nucl. Mater. 188, 155–157 (1988)

    Google Scholar 

  12. C.E. Johnson, G.W. Hollenberg et al., Fusion Eng. Des. 8, 145 (1989)

    Article  Google Scholar 

  13. N. Roux, S. Tanaka et al., Fusion Eng. Des. 41(3), 31–38 (1998)

    Article  Google Scholar 

  14. K. Tsuchiya, T. Hoshino et al., Nucl. Fusion 47(9), 1300 (2007)

    Article  ADS  Google Scholar 

  15. C.E. Johnson, K. Noda, N. Roux, J. Nucl. Mater. 258–263, 140–148 (1998)

    Article  ADS  Google Scholar 

  16. M. Kondo, M. Takahashi et al., Fusion Eng. Des. 87(10), 1777 (2012)

    Article  Google Scholar 

  17. J. Konys, W. Krauss et al., J. Nucl. Mater. 386–388, 678 (2009)

    Article  ADS  Google Scholar 

  18. S.H. Cho, S.B. Park et al., J. Nucl. Mater. 412, 157 (2011)

    Article  ADS  Google Scholar 

  19. S. Sonak, U. Jain et al., Fusion Eng. Des. 100, 507–512 (2015)

    Article  Google Scholar 

  20. S. Cho, Y.H. Park et al., Fusion Eng. Des. 124, 1052–1058 (2017)

    Article  Google Scholar 

  21. M. Xiang, Y. Zhang et al., Fusion Eng. Des. 102, 1–7 (2016)

    Article  Google Scholar 

  22. K. Tsuchiya, H. Kawamura, J. Nucl. Mater. 283–287(1), 1380–1384 (2000)

    Article  ADS  Google Scholar 

  23. K.A. Terrani, S.J. Zinkle, L.L. Snead, J. Nucl. Mater. 448(1–3), 420–435 (2014)

    Article  ADS  Google Scholar 

  24. J.H. Park, H.G. Kim et al., Surf. Coat. Technol. 280, 256–259 (2015)

    Article  Google Scholar 

  25. Y. Li, T. Nagasaka et al., Fusion Eng. Des. 86(9–11), 2495–2499 (2011)

    Article  Google Scholar 

  26. D.A. Mcclintock, M.A. Sokolov et al., J. Nucl. Mater. 392(2), 353–359 (2009)

    Article  ADS  Google Scholar 

  27. H. Hu, Z. Zhou et al., Corros. Sci. 65(4), 209–213 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported the National Natural Science Foundation of China (Nos. 51372017 and 51772022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Xiang, M., Zhang, Y. et al. Study on the Chemical Compatibility Study Between Li2TiO3 Pebbles and 14Cr-ODS Steel. J Fusion Energ 37, 247–254 (2018). https://doi.org/10.1007/s10894-018-0176-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-018-0176-z

Keywords

Navigation