Advertisement

Journal of Fusion Energy

, Volume 35, Issue 4, pp 673–682 | Cite as

Mechanical Design and Analysis of an Indirect-drive Cryogenic Target

  • Hong Yang
  • Kai Du
  • Haile Lei
  • Xiaobo Qi
  • Baibin Jiang
  • Haijun Zhang
  • Wenrong Wu
  • Jicheng Zhang
  • Kai Wang
  • Wei Lin
  • Qiang Yin
  • Guanghui Yuan
  • Sheng Wei
  • Jun Xie
  • Shasha Gao
  • Wei Ren
  • Yanzhong Li
  • Huaihua Luo
  • Jiang Zhen
Original Research
  • 130 Downloads

Abstract

Cryogenic target based on indirect-drive concept is concerned widely in the inertial confinement fusion field. An indirect-drive cryogenic target is designed to field on the SGIII laser device of China. Capsule and hohlraum design refers to the NIF ignition target Rev5. The target fabrication encounters many engineering issues because of complicated structures and low temperature experimental environment. A tapered capillary is used to feed and support the capsule. And a jacket is designed to solve capillary fixing, gas filling, sealing and other structural issues. Forming a uniform fuel ice-layer on the capsule inner faces withstanding gravity or surface tension effect is a key feature of this cryogenic target. Thermal mechanical package is designed to have the best capacity of controlling temperature gradient across the capsule with a thermally noncontact method. Thermal analyses conclude the best interface conductance arguments and jacket material for the TMP design. Besides, structural reliability of the target after cooling is conservatively analyzed with an optimized model.

Keywords

Inertial confinement fusion Cryogenic target Mechanical design Analysis 

Notes

Acknowledgments

The work in this article is accomplished with cooperation of the Cryogenic Target Research Team. The authors here want to thank for the material properties provided by the Material Research Department of CAEP, and good fabrication work from Corporation of Zheng Yang Technology.

References

  1. 1.
    C.R. Gibson, D.P. Atkinson, J.A. Baltz et al., Design of the NIF cryogenic target system. Fusion Sci. Technol. 55(3), 233–236 (2009)CrossRefGoogle Scholar
  2. 2.
    D.R. Harding, M.D. Wittman, D.H. Edgell, Considerations and requirements for providing cryogenic targets for direct-drive inertial fusion implosions at the National Ignition Facility. Fusion Sci. Technol. 63(2), 95–105 (2013)Google Scholar
  3. 3.
    T. Malsbury, B. Haid, C. Gibson et al., Fielding the NIF cryogenic ignition target. Proceedings of the euspen International Conference, 1, 36–40 (2008)Google Scholar
  4. 4.
    K. Kim, L. Mok, M.J. Erlenborn, Noncontact thermal gradient method for fabrication of uniform cryogenic inertial fusion target. J. Vac. Sci. Technol. 3(3), 1196–1200 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    L. Mok, K. Kim, T.P. Bernat et al., Temperature effects on the formation of a uniform liquid layer of hydrogen isotopes inside a spherical cryogenic ICF target. J. Vac. Sci. Technol. 1(2), 897–900 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    M.M.I. Raja, K. Kim, T.P. Bernat, An analysis of the stability of a uniform liquid fuel layer inside a spherical shell cryogenic inertial confinement fusion target. J. Vac. Sci. Technol. 7(3), 1170–1176 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    V. Varadarajan, K. Kim, T.P. Bernat, Thermally induced behavior of liquid mixtures of hydrogen isotopes inside a spherical inertial confinement fusion target. J. Vac. Sci. Technol. 5(4), 2750–2754 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    V. Varadarajan, K. Kim, T.P. Bernat, An analysis of the thermally induced formation of a uniform liquid layer of ternary deuterium-tritium mixture inside a cryogenic spherical shell inertial confinement fusion target. J. Vac. Sci. Technol. 6(3), 1876–1881 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    W.T. Shmayda, D.R. Harding, V.A. Versteeg et al., Micron-scaled defects on cryogenic targets: an assessment of condensate sources. Fusion Sci. Technol. 63(2), 87–94 (2013)Google Scholar
  10. 10.
    S.W. Haan, J.D. Lindl, D.A. Callahan et al., Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas 18(051001), 1–47 (2011)Google Scholar
  11. 11.
    R.R. Leach, J.E. Field, L. Mascio-Kegelmeyer et al., Image processing methods for characterizing cryogenic target quality during ice layer formation at the National Ignition Facility (NIF). High Power Lasers Fusion Res. II 8602(0H), 1–11 (2013)Google Scholar
  12. 12.
    R. Miles, J. Hamilton, J. Crawford et al., Microfabricated deep-etched structures for ICF and equation-of-state targets. Fusion Sci. Technol. 55(3), 308–312 (2009)CrossRefGoogle Scholar
  13. 13.
    B.J. Haid, T.N. Malsbury, C.R. Gibson et al., Measurement of total condensation on a shrouded cryogenic surface using a single quart crystal microbalance. Fusion Sci. Technol. 55(3), 276–282 (2009)CrossRefGoogle Scholar
  14. 14.
    J. Manzagol, G. Paquignon, D. Brisset et al., Evolution and progress of the cryogenic target shroud remover prototypes developed for the LMJ facility. Fusion Sci. Technol. 59(1), 159–165 (2011)Google Scholar
  15. 15.
    S. Bhandarkar, T. Parham, J. Fair, Modeling and experiments of compressible gas flow through microcapillary fill tubes on NIF targets. Fusion Sci. Technol. 59(1), 51–57 (2011)CrossRefGoogle Scholar
  16. 16.
    Y. Huang, J. Weng, J. Liu, Experimental investigation on sub-miliKelvin temperature control at liquid hydrogen temperatures. Cryogenics 61, 158–163 (2014)CrossRefGoogle Scholar
  17. 17.
    G. Moll, M. Martin, P. Baclet, Thermal simulations of the LMJ cryogenic target. Fusion Sci. Technol. 51(4), 737–746 (2008)CrossRefGoogle Scholar
  18. 18.
    H. Lei, P. Bi, Y. Yi et al., Solidification of an atomic fluid inside a spherical shell. Nucl. Fusion 55(6), 1–5 (2015)CrossRefGoogle Scholar
  19. 19.
    D.H. Edgell, R.S. Craxton, L.M. Elasky et al., Three-dimensional characterization of spherical cryogenic targets using ray-trace analysis of multiple shadowgraph views. Fusion Sci. Technol. 51(4), 717–726 (2008)Google Scholar
  20. 20.
    L. Risegari, M. Barucci, E. Olivieri et al., Measurement of the thermal conductivity of copper samples between 30 and 150 mK. Cryogenics 44(12), 875–878 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    F. Meydaneri, B. Saatçi, M. Özdemir, Thermal conductivities of solid and liquid phases for pure Al, pure Sn and their binary alloys. Fluid Phase Equilib. 298(1), 97–105 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Samal, J. Lee, D.-Y. Jeong et al., Characterization of thermal conductivity of SiO2–Al2O3–Y2O3 glasses. Thermochim. Acta 604(1), 1–6 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hong Yang
    • 1
  • Kai Du
    • 1
  • Haile Lei
    • 1
  • Xiaobo Qi
    • 1
  • Baibin Jiang
    • 1
  • Haijun Zhang
    • 1
  • Wenrong Wu
    • 1
  • Jicheng Zhang
    • 1
  • Kai Wang
    • 1
  • Wei Lin
    • 1
  • Qiang Yin
    • 1
  • Guanghui Yuan
    • 1
  • Sheng Wei
    • 1
  • Jun Xie
    • 1
  • Shasha Gao
    • 1
  • Wei Ren
    • 1
  • Yanzhong Li
    • 2
  • Huaihua Luo
    • 2
  • Jiang Zhen
    • 2
  1. 1.Research Center of Laser FusionChina Academy of Engineering PhysicsMianyangPeople’s Republic of China
  2. 2.Xi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations