Advertisement

Journal of Fusion Energy

, Volume 34, Issue 4, pp 721–726 | Cite as

Efficiency Enhancement of a 170 GHz Confocal Gyrotron Traveling Wave Tube

  • Youwei Yang
  • Sheng Yu
  • Yinghui Liu
  • Tianzhong Zhang
  • Yanyan Zhang
  • Qixiang Zhao
Original Research

Abstract

Confocal gyrotron traveling wave tube (gyro-TWT) is a novel gyrotron amplifier capable of operating in higher order modes while generating high power at the same time. Confocal gyro-TWT suppresses lower-order modes at the cost of reduction of efficiency. According to the characteristics of confocal system, in this paper, we theoretically design a special magnetron injection gun (MIG) for a 170 GHz confocal gyro-TWT, and then compare it with the traditional MIG. The efficiency is found to be as high as 33 %, deservedly higher than the traditional less than 10 %. The output power increases trebly accordingly.

Keywords

Confocal Gyro-TWT Efficiency Special MIG 

Notes

Acknowledgments

This work is supported in part by the national Basic Research Program under Grant 2014 CB33980 and in part by the national Natural Science Foundation of China under Grant 61231005.

References

  1. 1.
    L.R. Becerra, G.J. Gerfin, R.J. Temkin, D.J. Singel, R.G. Griffin, Dynamic nuclear polarization with a cyclotron resonance maser at 5 tesla. Phys. Rev. Lett. 71(21), 3561–3564 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    G. Bar, M. Bennati, T. Nguyen, J. Ge, J. Stubbe, R.G. Griffin, High frequency (140 GHz) time domain EPR and ENDOR spectroscopy: the tyrosyl radical-diiron cofactor in ribonucleotide reductase from yeast. J. Am. Chem. Soc. 123(15), 3569–3576 (2001)CrossRefGoogle Scholar
  3. 3.
    K.N. Hu, C. Song, H.H. Yu, T.M. Swager, R.G. Griffin, High-frequency dynamic nuclear polarization using biradicals: a multi-frequency EPR lineshape analysis. J. Chem. Phys. 128(5), 052302 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    K. Mizuno, Y. Wagatsuma, H. Warashina, K. Sawaya, Millimeter-wave imaging technologies and their applications, in 2007 8th IEEE International Vacuum Electronics Conference (IVEC 2007), (2007), pp. 13–14Google Scholar
  5. 5.
    A.V. Gaponov-Grekhov, V.L. Granatstein, Applications of High-Power Microwaves (Artech House, Boston, 1994)Google Scholar
  6. 6.
    K.R. Chu, Overview of research on the gyrotron traveling-wave amplifier. IEEE Trans. Plasma Sci. 30(3), 903–908 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    J.L. Seftor, V.L. Granatstein, K.R. Chu, P. Sprangle, M.E. Read, The electron cyclotron maser as a high power traveling wave amplifier of millimeter waves. IEEE J. Quantum Electron. 15(9), 844–848 (1979)ADSCrossRefGoogle Scholar
  8. 8.
    Y.Y. Lau, K.R. Chu. L.R. Barmett, V.L. Granatstein, Gyrotron traveling wave amplifier: I. Analysis of oscillation. Int. J. Infrared Millim. Waves. 2, 3, 373–395 (1981)Google Scholar
  9. 9.
    K.R. Chu, H.Y. Chen, C.L. Hung, T.H. Chang, L.R. Barnett, S.H. Chen, T.T. Yang, An ultra high gain gyrotron traveling wave amplifier. Phys. Rev. Lett. 81(21), 4760–4763 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    M. Garven, J.P. Calame, B.G. Danly, K.T. Nguyen, F.N. Wood, D.E. Pershing, A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region. IEEE Trans. Plasma Sci. 30(3), 885–893 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    D.B. McDermott, H.H. Song, Y. Hirata, A.T. Lin, L.R. Barnett, T.H. Chang, H.L. Hsu, P.S. Marandos, J.S. Lee, K.R. Chu, N.C. Luhmann, Design of a W-band TE01 mode gyrotron-traveling-wave amplifier with high power and broad-band capabilities. IEEE Trans. Plasma Sci. 30(3), 894–902 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    C.D. Joye, A novel wideband 140 GHz gyrotron amplifier. PhD Thesis, (Massachusetts Institution of Technology, 2008), pp. 30–32Google Scholar
  13. 13.
    V.L. Bratman, G.G. Denisov, S.V. Samsonov, A.W. Cross, A.D.R. Phelps, W. Xe, High-efficiency wideband gyro-TWTs and gyro-BWOs with helically corrugated waveguides. Radiophys. Quantum Electron. 50(2), 95–107 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    J.R. Sirigiri, M.A. Shapiro, R.J. Temkin, High-power 140-GHz quasioptical gyrotron traveling-wave amplifier. Phys. Rev. Lett. 90(25), 258302 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    C.D. Joye, J.R. Sirigiri, R.J. Temkin, Demonstration of a 140-GHz 1-kW confocal gyro-traveling-wave amplifier. IEEE Trans. Plasma Sci. 56(5), 818–827 (2009)CrossRefGoogle Scholar
  16. 16.
    W. Hu, Studies of novel 140 GHz gyrotrons. Ph.D. Thesis, (Massachusetts Institution of Technology, 1997), pp. 31–32Google Scholar
  17. 17.
    W. Hu, M.A. Shapiro et al., 140-GHz gyrotron experiments based on a confocal cavity. IEEE Trans. Plasma Sci. 26(3), 366–374 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    K.R. Chu, H.Y. Chen et al., Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier. IEEE Trans. Plasma Sci. 27(2), 391–404 (1999)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    C.-S, Kou, The design procedure for a stable high power gyro-TWT. Ph.D. Thesis, (Massachusetts Institution of Technology, 1991) pp. 79–95Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Youwei Yang
    • 1
  • Sheng Yu
    • 1
  • Yinghui Liu
    • 1
  • Tianzhong Zhang
    • 1
  • Yanyan Zhang
    • 1
  • Qixiang Zhao
    • 1
  1. 1.Terahertz Science and Technology Research CenterUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations