Skip to main content

Advertisement

Log in

Smaller & Sooner: Exploiting High Magnetic Fields from New Superconductors for a More Attractive Fusion Energy Development Path

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The current fusion energy development path, based on large volume moderate magnetic B field devices is proving to be slow and expensive. A modest development effort in exploiting new superconductor magnet technology development, and accompanying plasma physics research at high-B, could open up a viable and attractive path for fusion energy development. This path would feature smaller volume, fusion capable devices that could be built more quickly than low-to-moderate field designs based on conventional superconductors. Fusion’s worldwide development could be accelerated by using several small, flexible devices rather than relying solely on a single, very large device. These would be used to obtain the acknowledged science and technology knowledge necessary for fusion energy beyond achievement of high gain. Such a scenario would also permit the testing of multiple confinement configurations while distributing technical and scientific risk among smaller devices. Higher field and small size also allows operation away from well-known operational limits for plasma pressure, density and current. The advantages of this path have been long recognized—earlier US plans for burning plasma experiments (compact ignition tokamak, burning plasma experiment, fusion ignition research experiment) featured compact high-field designs, but these were necessarily pulsed due to the use of copper coils. Underpinning this new approach is the recent industrial maturity of high-temperature, high-field superconductor tapes that would offer a truly “game changing” opportunity for magnetic fusion when developed into large-scale coils. The superconductor tape form and higher operating temperatures also open up the possibility of demountable superconducting magnets in a fusion system, providing a modularity that vastly improves simplicity in the construction, maintenance, and upgrade of the coils and the internal nuclear engineering components required for fusion’s development. Our conclusion is that while tradeoffs exist in design choices, for example coil, cost and stress limits versus size, the potential physics and technology advantages of high-field superconductors are attractive and they should be vigorously pursued for magnetic fusion’s development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.N. Sorbom, J. Ball, T.R. Palmer, F.J. Mangiarotti, J.M. Sierchio, P. Bonoli, C. Kasten, D.A. Sutherland, H.S. Barnard, C.B. Haakonsen, J. Goh, C. Sung, D.G. Whyte, Fusion Eng. Des. 100 (2014)

  2. Gao report GAO-14-499 (2014)

  3. V. Chan et al., Nucl. Fusion 51, 083019 (2011)

    Article  ADS  Google Scholar 

  4. Y.K.M. Peng, Fusion Sci. Technol. 60(2), 441 (2011)

  5. S.C. Jardin et al., Fusion Eng. Des. 48, 281 (2000)

    Article  Google Scholar 

  6. J. Schmidt, J. Fusion Energy 10(4) (1991). doi:10.1007/BF01052124

  7. D.M. Meade, Fusion Eng. Des. 63, 531 (2002)

    Article  Google Scholar 

  8. T. Eich, A.W. Leonard, R.A. Pitts, W. Fundamenski, R.J. Goldston, T.K. Gray, A. Herrmann, A. Kirk, A. Kallenbach, O. Kardaun, A.S. Kukushkin, B. LaBombard, R. Maingi, M.A. Makowski, A. Scarabosio, B. Sieglin, J. Terry, A. Thornton, A.U. Team, J.E. Contributors, Nucl. Fusion 53, 9 (2013)

    Article  Google Scholar 

  9. D.G. Whyte, B. LaBombard, J.W. Hughes, B. Lipschultz, J. Terry, D. Brunner, P.C. Stangeby, D. Elder, A.W. Leonard, J. Watkins, J. Nucl. Mater. 438, S435–S439 (2013)

    Article  ADS  Google Scholar 

  10. B. LaBombard, FESAC-SP White Paper (2014); B. LaBombard, et al., Nucl. Fusion 55, 053020 (2015)

  11. F. Najmabadi et al., Fusion Eng. Des. 80, 3 (2006)

    Article  Google Scholar 

  12. Y.A. Podpaly, G.M. Olynyk, M.L. Garrett, P.T. Bonoli, D.G. Whyte, Fusion Eng. Des. 87, 3 (2012)

    Article  Google Scholar 

  13. M. Greenwald, FESAC Report (2007)

  14. J. Wei, W.G. Chen, W.Y. Wu et al., IEEE Trans. Appl. Supercond. 20 (2010). doi:10.1109/TASC.2010.2040030

  15. K. Kim, H.K. Park, K.R. Park et al., Nucl. Fusion 45 (2005). doi:10.1088/0029-5515/45/8/003

  16. S. Imagawa, S. Masuzaki, N. Yanagi, S. Yamaguichi, T. Satow, J. Yamamoto, O. Motojima, Fusion Eng. Des. 41 (1998). doi:10.1016/S0920-3796(97)00178-6

  17. H.-S. Bosch, V. Erckmann, R.W.T. König, F. Schauer, R.J. Stadler, A. Werner, IEEE Trans. Plasma Sci. 38(3) (2010). doi:10.1109/TPS.2009.2036918

  18. http://www.iter.org/

  19. M.O. Hoenig, Y. Iwasa, D.B. Montgomery, IEEE Trans. Magn. MAG-11 2 (1975). doi:10.1109/TMAG.1975.1058601

  20. U.P. Trociewitz, M. Dalban-Canassy, M. Hannion, D.K. Hilton, J. Jaroszynski, P. Noyes, Y. Viouchkov, H.W. Weijers, D.C. Larbalestier, Appl. Phys. Lett. 99, 202506 (2011)

    Article  ADS  Google Scholar 

  21. L. Bromberg, M. Tekula, L.A. El-Guebaly, et al., Fusion Eng. Des. 54 (2001). doi:10.1016/S0920-3796(00)00432-4

  22. G.M. Olynyk, et al., Fusion Eng. Des. 87 (2012). doi:10.1016/j.fusengdes.2011.12.009

  23. F. Najmabadi, Fusion Technol. 30 (1996). doi:10.1109/IECEC.1996.561162

  24. J.V. Minervini, J.H. Schultz, IEEE Trans. Appl. Supercond. 13 (2003). doi:10.1109/TASC.2003.812766

  25. N. Martovetsky, P. Michael, J. Minervini, A. Radovinsky, M. Takayasu, R. Thome, T. Ando, T. Isono, T. Kato, H. Nakajima, G. Nishijima, Y. Nunoya, M. Sugimoto, Y. Takahashi, H. Tsuji, D. Bessette, K. Okuno, M. Ricci, IEEE Trans. Appl. Supercond. 11(1) (2001). doi:10.1109/77.920253

  26. V. Selvamanickam, A. Xu, Y. Liu, N.D. Khatri, E. Galstyan, G. Majkic, C. Lei, Y. Chen, Supercond. Sci. Technol. 27, 055010 (2014)

    Article  ADS  Google Scholar 

  27. B. Coppi, A. Airoldi, R. Albanese, G. Ambrosino, F. Bombarda, A. Bianchi, A. Cardinali, G. Cenacchi, E. Costa, P. Detragiache, G. De Tommasi, A. DeVellis, G. Faelli, A. Ferrari, A. Frattolillo, P. Frosi, F. Giammanco, G. Grasso, M. Lazzaretti, S. Mantovani, S. Migliori, S. Pierattini, A. Pironti, G. Ramogida, G. Rubinacci, M. Sassi, M. Tavani, A. Tumino, F. Villon, Nucl. Fusion 53, 104013 (2013)

    Article  ADS  Google Scholar 

  28. M. Takayasu, L. Chiesa, L. Bromberg, J.V. Minervini, Supercond. Sci. Technol. 25(1) (2012). doi:10.1088/0953-2048/25/1/014011

  29. L. Bromberg, J.V. Minervini, J.H. Schultz et al., IEEE Trans. Appl. Supercond. 22, 3 (2012)

    Article  Google Scholar 

  30. S. Hahn et al. App. Phys. Lett 173511 (2013)

  31. A. Garofalo, Phys. Plasmas 13, 056110 (2006)

    Article  ADS  Google Scholar 

  32. E. Marmar, FESAC-SP White paper (2014)

  33. R. Parker, FESAC-SP White paper (2014)

  34. M.D. Larbalestier, A. Gurevich, D.M. Feldmann, A. Polyanskii, Nature 414 (2001). doi:10.1038/35104654

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Whyte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whyte, D.G., Minervini, J., LaBombard, B. et al. Smaller & Sooner: Exploiting High Magnetic Fields from New Superconductors for a More Attractive Fusion Energy Development Path. J Fusion Energ 35, 41–53 (2016). https://doi.org/10.1007/s10894-015-0050-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-015-0050-1

Keywords

Navigation