# A Neutron Diode for Subcritical Multistage Multipliers with Special Reference in Tritium Breeding

## Abstract

In this paper the interaction between a magnetic field and the neutron spin magnetic moment is explored for use in the design of a neutron diode or valve that allows a neutron flux to pass in one direction, while preventing a neutron flux in the opposite direction. A neutron diode that ensures the unidirectional movement of neutrons could be used in the design of a subcritical multistage neutron multiplier, a device that has thus far not been realised. With a subcritical multistage neutron multiplier, an initial source of neutrons could be multiplied substantially in a very small area. Such a device could have potential applications in tritium breeding in a fusion reactor, in medicine, in space exploration, etc. Utilizing a simplified geometrical model, a first preliminary study is performed to assess the feasibility of this concept.

## Keywords

Subcritical multistage multiplier Neutronic flux Tritium breeding## List of symbols

*a*Acceleration

*A*Area

- \({\mathbf {B}} \)
Magnetic field

- \(E_n \)
Energy of the neutron

*F*Force

- \(^3H \)
Rate of tritium breeding

*L*Distance

- \(m_n \)
Mass of the neutron

- \(M_n \)
*n*-Stage subcritical multiplication factor- \(M_1 \)
Single-stage subcritical multiplication factor

*n*Number of stages

*t*Time

*v*Velocity

*x*x-axis coordinate

- \(X_1 \)
Displacement in x-direction

*z*z-axis coordinate

- \(Z_1 \)
Displacement in z-direction

## Greek symbols

- \(\epsilon \)
Loss factor

- \(\theta \)
Angular separation

- \(\kappa \)
Neutron multiplication factor

- \(\mu _{S_{z}} \)
Spin-magnetic momentum of the neutron

- \(\Phi \)
Neutronic flux from fusion core

## Subscripts symbols

*b*Blanket

*s*Subcritical

*n**n*stages- 1
One stage

## References

- 1.L. Borst, The convergatron, a neutron amplifier. Phys. Rev.
**107**, 905–906 (1957)ADSCrossRefGoogle Scholar - 2.R. Avery, Coupled reactors with suppressed feedback. in
*Proceedings of 2nd UN International Conference*, Geneva, vol. 12, pp. 182–191 (1958)Google Scholar - 3.H. Daniel, Y.V. Petrov, Subcritical fission reactor driven by the low power accelerator. Nucl. Instrum. Meth. A
**373**, 131–134 (1996)ADSCrossRefGoogle Scholar - 4.A.P. Barzilov, A.V. Gulevich, A.V. Zrodnikov, O.F. Kukharchuk, V.B. Polevoy, L.P. Feoktistov, Neutronics analysis for a coupled blanket system of the hybrid fission-fusion reactor. Institute for Physics and Power Engineering Technical Report IPPE-2522 (1996)Google Scholar
- 5.A.M. Degtyarev, A.K. Kalugin, L.I. Ponomarev, Cascade subcritical molten salt reactor (CSMSR): Main features and restrictions. Prog. Nucl. Energy
**47**, 99–105 (2005)CrossRefGoogle Scholar - 6.A. Gulevich, V. Chekunov, O. Fokina, O. Komlev, O. Kukharchuk, C. Melnikov, N. Novikova, L. Ponomarev, E. Zemskov, Concept of electron accelerator-driven system based on subcritical cascade reactor. Prog. Nucl. Energy
**50**, 347–352 (2008)CrossRefGoogle Scholar - 7.A. Clausse, L. Soto, C. Friedli, L. Altamirano, Feasibility study of a hybrid subcritical fission system driven by Plasma-Focus fusion neutrons. Ann. Nucl. Energy
**78**, 10–14 (2015)CrossRefGoogle Scholar - 8.H. Nifenecker, O. Meplan, S. David,
*Accelerator Driven Subcritical Reactors*(Institute of Physics Publishing, Bristol, 2003)CrossRefGoogle Scholar - 9.J.T. Cremer, D.L. Williams, M.J. Fuller, C.K. Gary, M.A. Piestrup, R.H. Pantell, J. Feinstein, R.G. Flocchini, M. Boussoufi, H.P. Egbert, M.D. Kloh, R.B. Walker, Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator. Rev. Sci. Instrum.
**81**(1), 013902 (2010)ADSCrossRefGoogle Scholar - 10.J. Beringer, Particle Data Group, 2013 review of particle physics. Phys. Rev. D
**86**, 010001 (2012)ADSCrossRefGoogle Scholar