Advertisement

Journal of Fusion Energy

, Volume 35, Issue 2, pp 341–345 | Cite as

A Possible Shielding Blanket Module for CFETR Reactor

  • Hao Yang
  • Jie Zhang
  • Lei Li
  • Yang Qiu
  • Changle Liu
  • Damao Yao
Original Research

Abstract

The basic function of shielding blanket (SB) is to provide the main thermal and nuclear shielding to the vessel and external machine components. CFETR SB modules will be operated in steady mode with continuous neutron radiation and heat source. The SB module is currently operated in pulse mode, which indicates the SB module for CFETR should be designed to fit with the new operation conditions. In this paper, the SB module structural materials are investigated, and the reduced activation ferritic/martensitic steel is selected. The cooling structure of SB module is established and a new cooling system is put forward to ensure the temperature of SB module in an allowable range. The hydraulic and the thermo-mechanical performance are analyzed by finite element method. The analysis results indicate that the new cooling structure is well in the heat removal under the steady heat of CFETR.

Keywords

CFETR SB module Design Analysis 

Notes

Acknowledgments

This work is supported by the National Basic Research Program of China (Grant No. 2013GB10200) and National Program of China (2011GB114000).

References

  1. 1.
    H. Tanigawa, K.Shiba, A. Moslang, R.E. Stoller, R. Lindau, M.A. Sokolov, G.R. Odette, R.J. Kurtz, S. Jitsukawa, Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket. J. Nucl. Mater. 1-3, 9–15 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    S. Jitsukawa, K. Shiba, The Reduced Activation Ferritic/Martensitic Steel as a Structural Materials for the Test Blanket Modules. Japan Atomic Energy Research Institute, Ibaraki-Ken (2011)Google Scholar
  3. 3.
    USTC, ASIPP, SWIP, Report on Conceptual Design of CFETR Tokamak Machine V1.1Google Scholar
  4. 4.
    R. Raffray. Blanket Design Description Document (2013 FDR), ITER System Design Description Document-DDD-16BS (2013 FDR)Google Scholar
  5. 5.
    Duck-Hoi Kim, Min-Su Ha, Jong-Woong Choi, Hee-Jae Ahn, Joo-Shik Bak, Ki-Jung Jung, Cooling optimization for preliminary design of ITER blanket shield block. Fusion Eng. Des. 87, 921–926 (2012)CrossRefGoogle Scholar
  6. 6.
    P.A. Di Maio, P. Arena, J. Aubert, G. Bongiovi, P. Chiovaro, R. Giammusso, A. Li Puma, A. Tincani, Analysis of the thermo-mechanical behavior of the DEMO water-cooled lithium lead breeding blanket module under normal operation steady state conditions. Fusion Eng. Des. (2015). doi: 10.1016/j.fusengdes.2013.02.129
  7. 7.
    M. Li, H. Chen, G. Zhou, Q. Liu, S. Wang, Z. Lv, M. Ye, Preliminary structural design and thermo-mechanical analysis of helium cooled solid breeder blanket for Chinese fusion engineering test reactor. Fusion Eng. Des. 91, 39–43 (2015)CrossRefGoogle Scholar
  8. 8.
    A.-A.F. Tavassoli, J.-W. Resman, M. Schirra, K. Shiba, Materials design data for reduced activation martensitic steel type F82H. Fusion Eng. Des. 61–62, 617–628 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hao Yang
    • 1
    • 2
  • Jie Zhang
    • 2
  • Lei Li
    • 2
  • Yang Qiu
    • 2
  • Changle Liu
    • 2
  • Damao Yao
    • 2
  1. 1.University of Science and Technology of ChinaHefeiChina
  2. 2.Institute of Plasma PhysicsChinese Academy of SciencesHefeiChina

Personalised recommendations