Journal of Fusion Energy

, Volume 35, Issue 2, pp 312–326 | Cite as

Temperature-Dependent Hypersonic Flow Patterns of Expanding High-Density Metal Vapor Plasma from Capillary Source Simulating Plasma Flow Following a Fusion Disruption

  • Rudrodip Majumdar
  • Mohamed Bourham
Original Research


Capillary discharge devices generating electrothermal plasmas from ablation of a liner material exposed to high heat flux are adequate devices to simulate fusion disruptions. Expansion of capillary-generated plasma into large volume simulates the evolution of the aerosol and plasma particulates into the reactor vacuum vessel. Effect of non-linearity and plasma bulk temperature on the adiabatic compressibility index was previously investigated showing considerable effect on the bulk flow parameters of polycarbonate plasma formed by the ablation of the capillary inner wall. In a fusion reactor, metals in the plasma-facing components such as the divertor, limiter, and first wall, will experience evaporation and formation of metal-vapor plasmas. Mathematical models have been developed to investigate the adiabatic compressibility index of ionized bulk metal vapors taking into account atomic and cluster ionization of metals, in addition to the effect of plasma bulk temperature and other nonlinearities. An important aspect of this current work is the distinction of the ionized states of metallic species instead of temperature-dependent lumped effective atomic number.


Electrothermal plasma expansion Metal vapor plasma Adiabatic compressibility index Fusion disruption PFC disruption Particulate expansion 


  1. 1.
    J. Gilligan, M. Bourham, The use of an electrothermal plasma gun to simulate the extremely high heat flux conditions of a tokamak disruption. J. Fusion Energ. 12(3), 311–316 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    S.V. Kukhlevsky et al., Generation of pure, high-density metal-vapor plasma by capillary discharge. Appl. Phys. Lett. 74(19), 2779–2781 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    L.L. Raja, P.L. Varghese, Modeling of the electrothermal Ignitor metal vapor plasma for electrothermal-chemical guns. IEEE Trans. Magn. 33(1), 316–321 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    G.J. Dunn, S.D. Allemand, T.W. Eagar, Metal vapors in gas tungsten arcs: part I. spectroscopy and monochromatic photography. Metall. Trans. A 17A, 1851–1863 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    J. Kutzner, Metal vapor plasma jets in the high-current vacuum arcs, in Proceedings of ISDEIV, XVIIth International Symposium on Discharges and Electrical Insulation in Vacuum, Berkeley, CA, 1, July 21–26 1996, (1996), pp. 99–103Google Scholar
  6. 6.
    G.E. Dale, M.A. Bourham, Melt-layer erosion and resolidification of metallic plasma-facing components’, in Proceedings of 17th IEEE NPSS Symposium on Fusion Engineering, vol. 2, San Diego, CA, 6–10 Oct 1997, (1997), pp. 892–895Google Scholar
  7. 7.
    L. Winfrey, J. Gilligan, A. Saveliev, M. Abd Al-Halim, M. Bourham, A study of plasma parameters in a capillary discharge with calculations using ideal and non-ideal plasma models for comparison with experiment. IEEE Trans. Plasma Sci. 40(3), 843–852 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    P. Sigmund, I.S. Bitensky, J. Jensen, Molecule and cluster bombardment: energy loss, trajectories and collision cascades. Nucl. Instrum. Methods Phys. Res B 112(1–4), 1–11 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    C.W. Bauschlicher, L.A. Barnes, P.R. Taylor, Lowest ionization potentials of Al2. J. Phys. Chem. 93, 2932–2935 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    A. Kalemos, A. Mavridis, The electronic structure of Ti2 and Ti2 +. J. Chem. Phys. 135, 134302 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A.E. Kramida, J. Reader, Ionization energies of tungsten ions: W2+ through W72+. At. Data Nucl. Data Tables 92, 457–479 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    V.D. Lakhno, G.N. Chuev (eds.), Physics of Clusters (World Scientific Publishing, Singapore, 1998)Google Scholar
  13. 13.
    P.D. Desai, Thermodynamic properties of manganese and molybdenum. J. Phys. Chem. Ref. Data 16(1), 91–108 (1987)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    J.C. Slater, Atomic shielding constants. Phys. Rev. 36, 57–64 (1930)ADSCrossRefMATHGoogle Scholar
  15. 15.
    E. Clementi, D.L. Raimondi, W.P. Reinhardt, Atomic screening constants from SCF functions. II. atoms with 37 to 86 electrons. J. Chem. Phys. 47(4), 1300–1307 (1967)ADSCrossRefGoogle Scholar
  16. 16.
    R. Majumdar, J.G. Gilligan, A.L. Winfrey, M.A. Bourham, Supersonic flow patterns from electrothermal plasma source for simulated ablation and aerosol expansion following a fusion disruption. J. Fusion Energ. 33(1), 25–31 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Majumdar, J.G. Gilligan, A.L. Winfrey, M.A. Bourham, Scaling laws of bulk plasma parameters for a 1-D flow through a capillary with extended converging-diverging nozzle for simulated expansion into fusion reactor chamber. J. Fusion Energ. 34(4), 905–910 (2015)CrossRefGoogle Scholar
  18. 18.
    R. Majumdar, M.A. Bourham, Effect of plasma temperature and nonlinearity of the adiabatic compressibility index on flow parameters for hypersonic aerosol expansion following a plasma disruption. J. Fusion Energ. (2015). doi: 10.1007/s10894-015-9960-1 Google Scholar
  19. 19.
    A. Hassanein, Prediction of material erosion and lifetime during major plasma instabilities in tokamak devices. Fusion Eng. Des. 60, 527–546 (2002)CrossRefGoogle Scholar
  20. 20.
    H. Bolt, V. Barabash, W. Krauss, J. Linke, R. Neu, S. Suzuki, N. Yoshida, ASDEX Upgrade Team, Materials for the plasma-facing components of fusion reactors, J. Nucl. Mater. 329, 66–73 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    R. Neu et al., Tungsten: an option for divertor and main chamber plasma facing components in future fusion devices. Nucl. Fusion 45, 209–218 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    J. Linke, High heat flux performance of plasma facing materials and components under service conditions in future fusion reactors. Fusion Sci. Technol. 57(2T), 293–302 (2010)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Nuclear EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations