Advertisement

Journal of Fusion Energy

, Volume 35, Issue 1, pp 78–84 | Cite as

The Role of Magnetized Liner Inertial Fusion as a Pathway to Fusion Energy

  • D. B. Sinars
  • E. M. Campbell
  • M. E. Cuneo
  • C. A. Jennings
  • K. J. Peterson
  • A. B. Sefkow
Original Research

Abstract

We discuss the possible impacts of a new magnetized liner inertial fusion concept on magneto-inertial fusion approaches to fusion energy. Experiments in the last 1.5 years have already shown direct evidence of magnetic flux compression, a highly magnetized fusing fuel, significant compressional heating, a compressed cylindrical fusing plasma, and significant fusion yield. While these exciting results demonstrate several key principles behind magneto-inertial fusion, more work in the coming years will be needed to demonstrate that such targets can scale to ignition and high yield. We argue that justifying significant investment in pulsed inertial fusion energy beyond target development should require well-understood, significant fusion yields to be demonstrated in single-shot experiments. We also caution that even once target ideas and fusion power plants have been demonstrated, historical trends suggest it would still be decades before fusion could materially impact worldwide energy production.

Keywords

Inertial confinement fusion Magneto-inertial fusion Magnetized target fusion Magnetized liner inertial fusion Fusion energy Market penetration 

References

  1. 1.
    M.M. Basko, A.J. Kemp, J. Meyer-ter-Vehn, Nucl. Fusion 40, 59 (2000)CrossRefADSGoogle Scholar
  2. 2.
    P.F. Knapp et al., Phys. Plasmas 22, 056306 (2015)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    G.A. Wurden, S.C. Hsu, T.P. Intrator et al., J. Fusion Energ. (2015). doi: 10.1007/s10894-015-0038-x Google Scholar
  4. 4.
    S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)CrossRefADSGoogle Scholar
  5. 5.
    S.A. Slutz, R.A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)CrossRefADSGoogle Scholar
  6. 6.
    A.B. Sefkow et al., Phys. Plasmas 21, 072711 (2014)CrossRefADSGoogle Scholar
  7. 7.
    D.C. Rovang et al., Rev. Sci. Instrum. 85, 124701 (2014)CrossRefADSGoogle Scholar
  8. 8.
    P.K. Rambo et al., Appl. Opt. 44, 2421 (2005)CrossRefADSGoogle Scholar
  9. 9.
    R.D. McBride, S.A. Slutz, Phys. Plasmas 22, 052708 (2015)CrossRefADSGoogle Scholar
  10. 10.
    M.R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)CrossRefADSGoogle Scholar
  11. 11.
    P.F. Schmit et al., Phys. Rev. Lett. 113, 155004 (2014)CrossRefADSGoogle Scholar
  12. 12.
    M.R. Gomez et al., Phys. Plasmas 22, 056306 (2015)CrossRefADSGoogle Scholar
  13. 13.
    S.B. Hansen et al., Phys. Plasmas 22, 056313 (2015)CrossRefADSGoogle Scholar
  14. 14.
    D.B. Sinars et al., Phys. Rev. Lett. 105, 185001 (2010)CrossRefADSGoogle Scholar
  15. 15.
    D.B. Sinars et al., Phys. Plasmas 18, 056301 (2011)CrossRefADSGoogle Scholar
  16. 16.
    R.D. McBride et al., Phys. Rev. Lett. 109, 135004 (2012)CrossRefADSGoogle Scholar
  17. 17.
    R.D. McBride et al., Phys. Plasmas 20, 056309 (2013)CrossRefADSGoogle Scholar
  18. 18.
    T.J. Awe et al., Phys. Rev. Lett. 111, 235005 (2013)CrossRefADSGoogle Scholar
  19. 19.
    T.J. Awe et al., Phys. Plasmas 21, 056303 (2014)CrossRefADSGoogle Scholar
  20. 20.
    K.J. Peterson et al., Phys. Plasmas 19, 092701 (2012)CrossRefADSGoogle Scholar
  21. 21.
    K.J. Peterson et al., Phys. Plasmas 20, 056305 (2013)CrossRefADSGoogle Scholar
  22. 22.
    K.J. Peterson et al., Phys. Rev. Lett. 112, 135002 (2014)CrossRefADSGoogle Scholar
  23. 23.
    D.D. Ryutov, M.E. Cuneo, M.C. Herrmann, D.B. Sinars, S.A. Slutz, Phys. Plasmas 19, 062706 (2012)CrossRefADSGoogle Scholar
  24. 24.
    A.L. Velikovich, J.L. Giuliani, S.T. Zalesak, Phys. Plasmas 22, 042702 (2015)CrossRefADSGoogle Scholar
  25. 25.
    P.Y. Chang et al., Phys. Rev. Lett. 107, 035006 (2011)CrossRefADSGoogle Scholar
  26. 26.
    M.E. Cuneo, M.C. Herrmann, D.B. Sinars et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)CrossRefADSGoogle Scholar
  27. 27.
    C.A. Coverdale et al., Phys. Plasmas 14, 022706 (2007)CrossRefADSGoogle Scholar
  28. 28.
    S.A. Slutz, C.L. Olson, P. Peterson, Phys. Plasmas 10, 429 (2003)CrossRefADSGoogle Scholar
  29. 29.
    C.L. Olson, G. Rochau, S. Slutz et al., Fusion Sci. Technol. 47, 633 (2005)Google Scholar
  30. 30.
    V. Smil, Creating the Twentieth Century (Oxford University Press, Oxford, 2005)CrossRefGoogle Scholar
  31. 31.
    V. Smil, Transforming the Twentieth Century (Oxford University Press, Oxford, 2006)Google Scholar
  32. 32.
    V. Smil, Energy at the Crossroads (The MIT Press, Cambridge, 2003)Google Scholar
  33. 33.
    V. Smil, Energy Transitions: History, Requirements, Prospects, (Praeger Press, Santa Barbara, 2010)Google Scholar
  34. 34.
    U.S. Energy Information Agency. http://www.eia.gov/
  35. 35.
    J.C. Fischer, R.H. Pry, Technol. Forecast. Soc. Change 3, 75 (1971)CrossRefGoogle Scholar
  36. 36.
    C. Marchetti, Technol. Forecast. Soc. Change 10, 345 (1977)CrossRefGoogle Scholar
  37. 37.
    D.J.C. MacKay, Sustainable Energy-Without the Hot Air (UIT Cambridge Ltd., Cambridge, 2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • D. B. Sinars
    • 1
  • E. M. Campbell
    • 1
  • M. E. Cuneo
    • 1
  • C. A. Jennings
    • 1
  • K. J. Peterson
    • 1
  • A. B. Sefkow
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations