Skip to main content
Log in

Morphology Control of Graphene by LPCVD

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

We present a comprehensive study of the parameter for graphene growth by low pressure chemical vapor deposition on Cu foil. The growth of graphene was investigated in various conditions, changing the gas pressures, gas ratio, growth temperature and growth time. The synthesized graphene were characterized using Raman spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). By varying the growth time it can be concluded that the domain size increases when the growth time increases. The absence of 2D band in this section suggest that the produced graphene-like films are not monolayer and graphite can be formed in this growth conditions. The FESEM images demonstrate that increasing growth temperature while holding other parameters constant yields in larger domains which may be due to a faster growth at the higher temperature. The Raman spectra also showed the recovery of the 2D peak by increasing the growth temperature, indicating the crystallization of the damaged graphene layer. Hence the quality of grown graphene-like films is highly correlated to the process temperature. We show that the methane-to-hydrogen ratio is critical parameters that affect the structural perfection of graphene like domains. The Raman studies denote graphene like carbon nature due to the appearance of significant G and 2D peaks. Also the 2D peak intensity increases by increasing the H2 concentration in gas mixture, indicating a low graphene layers. The resulting domain size and the nucleation density are maximum at maximum value of H2 concentration. We can conclude that by controlling the growth parameters, the morphology and structure of graphene can be changed. We suggest that graphene can be used for fusion reactor first wall due to its unique physical and chemical properties. Our results provide important guidance toward the synthesis of high quality and uniform graphene films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Litnovsky, P. Wienhold, V. Philipps et al., J. Nucl. Mater. 363–365, 1395 (2007)

    Article  Google Scholar 

  2. A. Litnovsky, D.L. Rudakov, G. De Temmerman et al., Fusion Eng. Des. 83, 79 (2008)

    Article  Google Scholar 

  3. C. Li, Q. Huang, Y. Feng et al., Plasma Sci. Technol. 9, 484–487 (2007)

  4. O.I. Buzhinskij, V.A. Barsuk, V.G. Otroshchenko, J. Nucl. Mater. 390–391, 996 (2009)

    Article  Google Scholar 

  5. V.K. Gusev et al., J. Nucl. Mater. 386–388, 708 (2009)

    Article  Google Scholar 

  6. C.P.C. Wong, J. Nucl. Mater. 390–391, 1026 (2009)

    Article  Google Scholar 

  7. M. Shimada, R.A. Pitts, J. Nucl. Mater. 415, S1013 (2011)

    Article  ADS  Google Scholar 

  8. T. Yamashina, T. Hino, J. Nucl. Sci. Technol. 27(7), 589–600 (1990)

    Article  Google Scholar 

  9. A. Matsumoto, Y. Yamauchi, T. Hino, Y. Ueda, K. Nishimura, Plasma Fusion Res. Regul. Artic. 7, 2402090 (2012)

    Article  ADS  Google Scholar 

  10. A.A. Balandin, Nat. Mater. 10, 569–581 (2011)

    Article  ADS  Google Scholar 

  11. R. Faccio, P.A. Denis, H. Pardo, C. Goyenola, Á.W. Mombrú, J. Phys.: Condens. Matter 21, 285304 (2009)

  12. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  13. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446, 60–63 (2007)

    Article  ADS  Google Scholar 

  14. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  ADS  Google Scholar 

  15. S. Gilje, S. Han, M.S. Wang, K.L. Wang, R.B. Kaner, A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007)

    Article  ADS  Google Scholar 

  16. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  17. C. Riedl, C. Coletti, T. Iwasaki, A.A. Zakharov, U. Starke, Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103(24), 246804 (2009)

    Article  ADS  Google Scholar 

  18. J. Kraus, S. Bocklein, R. Reichelt, S. Gunther, B. Santos, T.O. Mentes, A. Locatelli, Towards the perfect graphene membrane-improvement and limits during formation of high quality graphene grown on Cu-foils. Carbon 64, 377–390 (2013)

    Article  Google Scholar 

  19. J. Zhang, P. Hu, X. Wang, Z. Wang, Structural evolution and growth mechanism of graphene domains on copper foil by ambient pressure chemical vapor deposition. Chem. Phys. Lett. 536, 123–128 (2012)

    Article  ADS  Google Scholar 

  20. A. Kumar, A.A. Voevodin, D. Zemlyanov, D.N. Zakharov, T.S. Fisher, Rapid synthesis of few layer graphene over Cu foil. Carbon 50, 1546–1553 (2012)

    Article  Google Scholar 

  21. M. Sarno, C. Cirillo, R. Piscitelli, P. Ciambelli, A study of the key parameters, including the crucial role of H2 for uniform graphene growth on Ni foil. J. Mol. Catal. A Chem. 366, 303–314 (2013)

    Article  Google Scholar 

  22. A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, A. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)

    Article  ADS  Google Scholar 

  23. S.P. Park, J.H. An, R.D. Piner, I. Jung, D.X. Yang, A. Velamakanni et al., Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592–6594 (2008)

    Article  Google Scholar 

  24. W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames et al., Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 4, 562–566 (2009)

    Article  ADS  Google Scholar 

  25. J.A. Venables, G.D.T. Spiller, M. Hanbucken, Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399 (1984)

    Article  ADS  Google Scholar 

  26. V.N.E. Robinson, J.L. Robins, Observation of nucleation processes. Thin Solid Films 20, 155 (1974)

    Article  ADS  Google Scholar 

  27. P.F. Williams, S.P.S. Porto, Symmetry-forbidden resonant Raman scattering in Cu2O. Phys. Rev. B 8, 1782–1785 (1973)

    Article  ADS  Google Scholar 

  28. C. Thomsen, S. Reich, Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000)

    Article  ADS  Google Scholar 

  29. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)

    Article  ADS  Google Scholar 

  30. A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001)

    Article  ADS  Google Scholar 

  31. J. Maultzsch, S. Reich, C. Thomsen, Double-resonant Raman scattering in graphite: interference effects, selection rules, and phonon dispersion. Phys Rev B 70, 155403 (2004)

    Article  ADS  Google Scholar 

  32. G.V. Saparin, Microcharacterization of CVD diamond films by scanning electronmicroscopy: morphology, structure and microdefects. Diam. Relat. Mater. 3, 1337–1351 (1994)

    Article  ADS  Google Scholar 

  33. M. Losurdo, M.M. Giangregorio, P. Capezzuto, G. Bruno, Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13(46), 20836–20843 (2011)

    Article  Google Scholar 

  34. E. Vaghri, Z. Khalaj, M. Ghoranneviss, Characterization of diamond: like carbon films synthesized by DC-plasma enhanced chemical vapor deposition. J Fusion Energ 30, 447–452 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Hantehzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, A., Ghoranneviss, M. & Hantehzadeh, M.R. Morphology Control of Graphene by LPCVD. J Fusion Energ 34, 532–539 (2015). https://doi.org/10.1007/s10894-014-9836-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-014-9836-9

Keywords

Navigation