Journal of Fusion Energy

, Volume 34, Issue 3, pp 532–539 | Cite as

Morphology Control of Graphene by LPCVD

  • A. Jafari
  • M. Ghoranneviss
  • M. R. Hantehzadeh
Original Research


We present a comprehensive study of the parameter for graphene growth by low pressure chemical vapor deposition on Cu foil. The growth of graphene was investigated in various conditions, changing the gas pressures, gas ratio, growth temperature and growth time. The synthesized graphene were characterized using Raman spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). By varying the growth time it can be concluded that the domain size increases when the growth time increases. The absence of 2D band in this section suggest that the produced graphene-like films are not monolayer and graphite can be formed in this growth conditions. The FESEM images demonstrate that increasing growth temperature while holding other parameters constant yields in larger domains which may be due to a faster growth at the higher temperature. The Raman spectra also showed the recovery of the 2D peak by increasing the growth temperature, indicating the crystallization of the damaged graphene layer. Hence the quality of grown graphene-like films is highly correlated to the process temperature. We show that the methane-to-hydrogen ratio is critical parameters that affect the structural perfection of graphene like domains. The Raman studies denote graphene like carbon nature due to the appearance of significant G and 2D peaks. Also the 2D peak intensity increases by increasing the H2 concentration in gas mixture, indicating a low graphene layers. The resulting domain size and the nucleation density are maximum at maximum value of H2 concentration. We can conclude that by controlling the growth parameters, the morphology and structure of graphene can be changed. We suggest that graphene can be used for fusion reactor first wall due to its unique physical and chemical properties. Our results provide important guidance toward the synthesis of high quality and uniform graphene films.


LPCVD Graphene Fusion reactor FESEM 


  1. 1.
    A. Litnovsky, P. Wienhold, V. Philipps et al., J. Nucl. Mater. 363–365, 1395 (2007)CrossRefGoogle Scholar
  2. 2.
    A. Litnovsky, D.L. Rudakov, G. De Temmerman et al., Fusion Eng. Des. 83, 79 (2008)CrossRefGoogle Scholar
  3. 3.
    C. Li, Q. Huang, Y. Feng et al., Plasma Sci. Technol. 9, 484–487 (2007)Google Scholar
  4. 4.
    O.I. Buzhinskij, V.A. Barsuk, V.G. Otroshchenko, J. Nucl. Mater. 390–391, 996 (2009)CrossRefGoogle Scholar
  5. 5.
    V.K. Gusev et al., J. Nucl. Mater. 386–388, 708 (2009)CrossRefGoogle Scholar
  6. 6.
    C.P.C. Wong, J. Nucl. Mater. 390–391, 1026 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Shimada, R.A. Pitts, J. Nucl. Mater. 415, S1013 (2011)CrossRefADSGoogle Scholar
  8. 8.
    T. Yamashina, T. Hino, J. Nucl. Sci. Technol. 27(7), 589–600 (1990)CrossRefGoogle Scholar
  9. 9.
    A. Matsumoto, Y. Yamauchi, T. Hino, Y. Ueda, K. Nishimura, Plasma Fusion Res. Regul. Artic. 7, 2402090 (2012)CrossRefADSGoogle Scholar
  10. 10.
    A.A. Balandin, Nat. Mater. 10, 569–581 (2011)CrossRefADSGoogle Scholar
  11. 11.
    R. Faccio, P.A. Denis, H. Pardo, C. Goyenola, Á.W. Mombrú, J. Phys.: Condens. Matter 21, 285304 (2009)Google Scholar
  12. 12.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefADSGoogle Scholar
  13. 13.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446, 60–63 (2007)CrossRefADSGoogle Scholar
  14. 14.
    A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)CrossRefADSGoogle Scholar
  15. 15.
    S. Gilje, S. Han, M.S. Wang, K.L. Wang, R.B. Kaner, A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007)CrossRefADSGoogle Scholar
  16. 16.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefADSGoogle Scholar
  17. 17.
    C. Riedl, C. Coletti, T. Iwasaki, A.A. Zakharov, U. Starke, Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103(24), 246804 (2009)CrossRefADSGoogle Scholar
  18. 18.
    J. Kraus, S. Bocklein, R. Reichelt, S. Gunther, B. Santos, T.O. Mentes, A. Locatelli, Towards the perfect graphene membrane-improvement and limits during formation of high quality graphene grown on Cu-foils. Carbon 64, 377–390 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, P. Hu, X. Wang, Z. Wang, Structural evolution and growth mechanism of graphene domains on copper foil by ambient pressure chemical vapor deposition. Chem. Phys. Lett. 536, 123–128 (2012)CrossRefADSGoogle Scholar
  20. 20.
    A. Kumar, A.A. Voevodin, D. Zemlyanov, D.N. Zakharov, T.S. Fisher, Rapid synthesis of few layer graphene over Cu foil. Carbon 50, 1546–1553 (2012)CrossRefGoogle Scholar
  21. 21.
    M. Sarno, C. Cirillo, R. Piscitelli, P. Ciambelli, A study of the key parameters, including the crucial role of H2 for uniform graphene growth on Ni foil. J. Mol. Catal. A Chem. 366, 303–314 (2013)CrossRefGoogle Scholar
  22. 22.
    A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, A. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)CrossRefADSGoogle Scholar
  23. 23.
    S.P. Park, J.H. An, R.D. Piner, I. Jung, D.X. Yang, A. Velamakanni et al., Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592–6594 (2008)CrossRefGoogle Scholar
  24. 24.
    W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames et al., Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 4, 562–566 (2009)CrossRefADSGoogle Scholar
  25. 25.
    J.A. Venables, G.D.T. Spiller, M. Hanbucken, Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399 (1984)CrossRefADSGoogle Scholar
  26. 26.
    V.N.E. Robinson, J.L. Robins, Observation of nucleation processes. Thin Solid Films 20, 155 (1974)CrossRefADSGoogle Scholar
  27. 27.
    P.F. Williams, S.P.S. Porto, Symmetry-forbidden resonant Raman scattering in Cu2O. Phys. Rev. B 8, 1782–1785 (1973)CrossRefADSGoogle Scholar
  28. 28.
    C. Thomsen, S. Reich, Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000)CrossRefADSGoogle Scholar
  29. 29.
    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)CrossRefADSGoogle Scholar
  30. 30.
    A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001)CrossRefADSGoogle Scholar
  31. 31.
    J. Maultzsch, S. Reich, C. Thomsen, Double-resonant Raman scattering in graphite: interference effects, selection rules, and phonon dispersion. Phys Rev B 70, 155403 (2004)CrossRefADSGoogle Scholar
  32. 32.
    G.V. Saparin, Microcharacterization of CVD diamond films by scanning electronmicroscopy: morphology, structure and microdefects. Diam. Relat. Mater. 3, 1337–1351 (1994)CrossRefADSGoogle Scholar
  33. 33.
    M. Losurdo, M.M. Giangregorio, P. Capezzuto, G. Bruno, Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13(46), 20836–20843 (2011)CrossRefGoogle Scholar
  34. 34.
    E. Vaghri, Z. Khalaj, M. Ghoranneviss, Characterization of diamond: like carbon films synthesized by DC-plasma enhanced chemical vapor deposition. J Fusion Energ 30, 447–452 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Jafari
    • 1
  • M. Ghoranneviss
    • 1
  • M. R. Hantehzadeh
    • 1
  1. 1.Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations