Journal of Fusion Energy

, Volume 34, Issue 2, pp 411–421 | Cite as

Design and Fabrication of a Data Acquisition System for Pulsed Neutron Flux Measurement of Plasma Focus Devices

  • Yadollah Lotfi
  • Gholam Reza Etaati
  • Vahid Doust-Mohammadi
  • Nima Ghal-Eh
Original Research


Silver-activated Geiger counters together with a polyethylene layer as neutron moderator are frequently used in pulsed neutron flux measurements in research studies with plasma focus (PF) devices. In this study, an array of seven counters was used at seven different angles (0°, ±30°, ±60° and ±90°) to the PF-axis for which a software and a 10-channel data acquisition hardware (PCT2660) compatible with NIM standards have been designed and fabricated. In the proposed PCT2660, the preset timing algorithms are considered as general and they can be programmed for required detector calibrations and neutron flux measurements. The calibration constant measurement has been undertaken with a 16.5 Ci Am–Be source of 35 mm diameter by 70 mm cylindrical active volume located at anode top whilst the neutron flux at zero degree of PF device axis at 13.5 kV operating voltage and 13.54 × 10−2 PSI pressure is measured as (2.88 ± 0.29) × 108 neutrons per shot. Accordingly, the studies on the angular distribution of the PF neutron emission within the pressure range of 7.73 × 10−2–15.47 × 10−2 PSI confirm an anisotropy ranging from 1.53 ± 0.09 to 2.95 ± 0.24 and a symmetry of angular distribution around the anode axis.


Neutron flux Plasma focus device Data acquisition device Pulsed neutron Neutron activation counter 



The authors would like to thank the anonymous reviewers for careful reading of the manuscript and their helpful comments. Also, the authors would like to express their gratitude to Dr. N. Q. Pourdana, the CamTESOL certified editor, for proofreading of this article.


  1. 1.
    R. Baghdadi, R. Amrollahi, M. Habibi, G.R. Etaati, Investigation of the neutron angular distribution and neutron yield on the APF plasma focus device. J. Fusion. Energ. 30, 72–77 (2011)CrossRefADSGoogle Scholar
  2. 2.
    H. Bruzzone, M.O. Barbaglia, H.N. Acuña, M.M. Milanese, R.L. Moroso, S. Guichon, On probable fusion mechanisms in a Mather-type plasma focus. IEEE Trans. Plasma Sci. 41, 3180–3183 (2013)CrossRefADSGoogle Scholar
  3. 3.
    M. Hayati, G.H. Roshani, H. Abdi, A. Rezaei, M. Mahtab, An optimized design of anode shape based on artificial neural network for achieving highest X-ray yield in plasma focus device. J. Fusion. Energ. 32, 615–621 (2013)CrossRefGoogle Scholar
  4. 4.
    E.J. Lerner, S.K. Murali, D. Shannon, A.M. Blake, F. Van Roessel, Fusion reactions from 150 keV ions in a dense plasma focus plasmoid. Phys. Plasmas 19, 032704 (2012)CrossRefADSGoogle Scholar
  5. 5.
    F. Veloso, J. Moreno, A. Tarifeño-Saldivia, C. Pavez, M. Zambra, L. Soto, Non-intrusive plasma diagnostics for measuring sheath kinematics in plasma focus discharges. Meas. Sci. Technol. 23, 087002 (2012)CrossRefADSGoogle Scholar
  6. 6.
    M.T. Hosseinnejad, Z. Ghorannevis, M. Ghoranneviss, M. Soltanveisi, M. Shirazi, Preparation of titanium carbide thin film using plasma focus device. J. Fusion. Energ. 30, 516–522 (2011)CrossRefADSGoogle Scholar
  7. 7.
    L. Jakubowski, M. Sadowski, J. Zebrowski, Measurements of charged particle beams from plasma focus discharges. Nucl. Fusion 41, 755 (2001)CrossRefADSGoogle Scholar
  8. 8.
    G. Decker et al., Micropinch actuation in the SPEED 2 plasma focus. Plasma Sources Sci. Technol. 5, 112 (1996)CrossRefADSGoogle Scholar
  9. 9.
    M.J. Sadowski, M. Scholz, Results of large scale plasma—focus experiments and prospects for neutron yield optimization. Nukleonika 47, 31–38 (2002)Google Scholar
  10. 10.
    L. Soto et al., Demonstration of neutron production in a table-top pinch plasma focus device operating at only tens of joules. J. Phys. D Appl. Phys. 41, 205215 (2008)CrossRefADSGoogle Scholar
  11. 11.
    H.J. Woo, K.S. Chung, M.J. Lee, Dependence of neutron yield on the deuterium filling pressure in a plasma focus device. Plasma Phys. Control. Fusion 46, 1095–1104 (2004)CrossRefADSGoogle Scholar
  12. 12.
    V.V. Vikhrev, Sov. J. Plasma Phys. 12, 262 (1986)Google Scholar
  13. 13.
    M.J. Bernstein, Deuteron acceleration and neutron production in pinch discharges. Phys. Rev. Lett. 24, 724 (1970)CrossRefADSGoogle Scholar
  14. 14.
    J.H. Lee, L.P. Shomo, M.D. Willams, H. Hermansdorfer, Neutron production mechanism in a plasma focus. Phys. Fluids 14, 2217–2223 (1971)CrossRefADSGoogle Scholar
  15. 15.
    M. Zakaullah, I. Akhtar, G. Murtaza, A. Waheed, Imaging of fusion reaction zone in plasma focus. Phys. Plasmas 6, 3188–3193 (1999)CrossRefADSGoogle Scholar
  16. 16.
    N. Tsoulfanidis, Measurement and Detection of Radiation (Taylor & Francis, Washington, 1983)Google Scholar
  17. 17.
    R.B. Firestone, V.S. Shirley, C.M. Baglin, S.Y.F. Chu, J. Zipkin, Table of Isotopes (Wiley, London, 1996)Google Scholar
  18. 18.
    A. Gentilini et al., Comparison of four calibration techniques of a silver activated Geiger counter for the determination of the neutron yield on the Frascati plasma focus experiment. Nucl. Instrum. Methods. 172, 541–552 (1980)CrossRefADSGoogle Scholar
  19. 19.
    G.R. Etaati, R. Amrollahi, V. Doust-Mohammadi, N. Ghal-Eh, M. Habibi, Calibration constant of a silver activated Geiger counter used for neutron efficiency measurements in plasma focus devices: theoretical vs. experimental studies. J. Fusion. Energ. 29, 381–386 (2010)CrossRefADSGoogle Scholar
  20. 20.
    H. Schmidt, P. Kubes, M.J. Sadowski, M. Scholz, Neutron emission characteristics of pinched dense magnetized plasmas. IEEE Trans. Plasma Sci. 34, 2363–2367 (2006)CrossRefADSGoogle Scholar
  21. 21.
    H. Herold, A. Jerzykiewicz, M. Sadowski, H. Schmidt, Comparative analysis of large plasma focus experiments performed at IPF, Stuttgart, and IPJ, Świerk. Nucl. Fusion 29, 1255–1269 (1989)CrossRefGoogle Scholar
  22. 22.
    M. Zakaullah, I. Akhtar, A. Waheed, K. Alamgir, A.Z. Shah, G. Murtaza, Comparative study of ion, X-ray and neutron emission in a low energy plasma focus. Plasma Sources Sci. Technol. 7, 206 (1998)CrossRefADSGoogle Scholar
  23. 23.
    M. Zakaullah, G. Murtaza, I. Ahmad, F.N. Beg, M.M. Beg, M. Shabbir, Comparative study of low energy Mather-type plasma focus devices. Plasma Sources Sci. Technol. 4, 117 (1995)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yadollah Lotfi
    • 1
  • Gholam Reza Etaati
    • 1
  • Vahid Doust-Mohammadi
    • 2
  • Nima Ghal-Eh
    • 3
  1. 1.Department of Energy Engineering and PhysicsAmir Kabir University of TechnologyTehranIran
  2. 2.Nuclear Science and Technology Research CenterAEOITehranIran
  3. 3.School of PhysicsDamghan UniversityDamghanIran

Personalised recommendations