Journal of Fusion Energy

, Volume 33, Issue 6, pp 677–683 | Cite as

Simulation of Nitrogen and Oxygen Spectra Emitted from High Density Hot Plasma

  • S. Alsheikh Salo
  • M. Akel
  • C. S. Wong
Original Research


The expected emission spectra of nitrogen and oxygen high density plasma have been studied for different conditions. Expected nitrogen and oxygen plasma spectra at certain electron temperature range have been plotted. Suitable electron temperature ranges for nitrogen and oxygen plasma soft X-ray emission and extreme ultraviolet emission have been investigated. Numerical experiments confirm the possibility of developing nitrogen and oxygen plasma focus as a powerful X-ray radiation source for water-window X-ray microscopy, by selecting the working gas pressure, choosing corresponding design and operating parameters of the device. We have illustrated that the results obtained from XRAYFIL simulation could be used to provide spectroscopic information of the plasma focus simulated by Lee model.


Nitrogen and oxygen plasma Soft X-ray EUV emission X-rays ratio method 



The authors would like to thank general director of AECS for support, guidance and encouragement. C. S. Wong’s participation in this work is supported by University of Malaya research Grant RG204-11AFR.


  1. 1.
    M. Shafiq et al., Mod. Phys. Lett. B 16(9), 309 (2002)CrossRefADSGoogle Scholar
  2. 2.
    M. Shafiq et al., J. Fusion Energ, 20(3), 113 (2001) (q 2002)Google Scholar
  3. 3.
    N.K. Neog et al., J. Appl. Phys. 99, 013302 (2006)CrossRefADSGoogle Scholar
  4. 4.
    A. Roomi et al., J. Fusion Energ (2011). doi: 10.1007/s10894-011-9395-2 MATHGoogle Scholar
  5. 5.
    M. A. I. Elgarhy, M. Sc. Thesis, Plasma Focus and its Applications, Cairo (2010)Google Scholar
  6. 6.
    R. Lebert, W. Neff, D. Rothweiler, J. X-ray Sci. Tech. 6, 2 (1996)CrossRefGoogle Scholar
  7. 7.
    R. Lebert, D. Rothweiler, A. Engel, K. Bergmann, W. Neff, Opt. Quant. Electron. 28, 241–259 (1996)CrossRefGoogle Scholar
  8. 8.
    F. Richer et al., Dense z-pinches. Second International Conference (1989), New York/NY: AIP, (AIP Conference Proceedings 195) (1989)Google Scholar
  9. 9.
    R. Lebert, A. Engel, W. Neff, J. Appl. Phys. 78(11), 6414–6420 (1995)CrossRefADSGoogle Scholar
  10. 10.
    I.V. Fomenkov, N.R. Böwering, C.L. Retting, S.T. Melnychuk, I.R. Oliver, J.R. Hoffman, O.V. Khodykin, R.M. Ness, W.N. Partlo, J. Phys. D Appl. Phys. 37, 3266 (2004)CrossRefADSGoogle Scholar
  11. 11.
    I.V. Fomenkov, R.M. Ness, I.R. Oliver, S.T. Melnychuk, O.V. Khodykin, N.R. Böwering, C.L. Retting, J.R. Hoffman, Proc. SPIE 5374, 168 (2004)CrossRefADSGoogle Scholar
  12. 12.
    R. Mongkolnavin, P. Tangitsomboon, C. San Wong, J. Sci. Technol. Trop. 6, 43 (2010)Google Scholar
  13. 13.
    V. Banine, R. Moors, J. Phys. D Appl. Phys. 37, 3207 (2004)CrossRefADSGoogle Scholar
  14. 14.
    S.R. Mohanty et al., Microelectron. Eng. 65, 47 (2003)CrossRefGoogle Scholar
  15. 15.
    D. Hong et al., Rev. Sci. Instrum. 71, 15 (2000)CrossRefADSGoogle Scholar
  16. 16.
    G. Xiaoming et al., Proc. SPIE 4343, 491 (2001)CrossRefGoogle Scholar
  17. 17.
    S. Saboohi, S.L. Yap, L.S. Chan, C.S. Wong, IEEE Trans. Plasma Sci. (Part 2) 40(12), 3390 (2012)CrossRefADSGoogle Scholar
  18. 18.
    I.V. Fomenkov et al., Proc. SPIE 5037, 807 (2003)CrossRefADSGoogle Scholar
  19. 19.
    R.S. Rawat et al., Plasma Sources Sci. Technol. 13, 569 (2004)CrossRefADSGoogle Scholar
  20. 20.
    D. Rastovic, Transport theory and systems theory. Nucl. Technol. Radiat. Prot. 20(1), 50 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Rastovic, Fractional variational problems and particle in cell gyrokinetic simulation with fuzzy logic approach for tokamaks. Nucl. Technol. Radiat. Prot. 24(2), 138 (2009)CrossRefGoogle Scholar
  22. 22.
    D. Rastovic, Feedback stabilization of some classes of nonlinear transport systems. Rendiconti del Circolo Matematico di Palermo 51(2), 325 (2002)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    H.K. Chunga, W.L. Morgan, R.W. Lee, J. Quant. Spectrosc. Radiat. Transf. 81, 107 (2003)CrossRefADSGoogle Scholar
  24. 24.
    G.J. Phillips, J.S. Wark, F.M. Kerr, S.J. Rose, R.W. Lee, High Energy Density Phys. 4, 18 (2008)CrossRefADSGoogle Scholar
  25. 25.
    R.W. Lee, Manual—the how to for fly (1995)Google Scholar
  26. 26.
    H.K. Chung, R.W. Lee, M.H. Chen, Y. Ralchenko, Manual—the how to for FLYCHK @ NIST (2008)Google Scholar
  27. 27.
    R.W. Lee, User Manual for RATION, Lawrence Liver more National Laboratory (1990)Google Scholar
  28. 28.
    C.J. Keane, R.W. Lee, J.P. Grandy, DSP: A detailed spectroscopy postprocessor for H-, He-, and Li-like ions. UCRL-JC—106737, DE91 009475. Lawrence Livermore National Laboratory Liveimore, CA. Proceedings of the International Workshop on Radiative Properties of Hot Dense Matter Sarasota, Florida, February 22 (1991)Google Scholar
  29. 29.
    R.W. Lee, B.L. Whitten, R.E. Strout, J. Quant. Spectrosc. Radiat. Transf. 32, 91 (1984)CrossRefADSGoogle Scholar
  30. 30.
    S.H. Kim, D.E. Kim, T.N. Lee, IEEE Trans. Plasma Sci. 26(4), 1108 (1998)CrossRefADSGoogle Scholar
  31. 31.
    C. Dumitrescu-Zoita, Ph.D. Thesis, Université de Paris Sud. (1996)Google Scholar
  32. 32.
    M. Akel, S. Alsheikh Salo, C.S. Wong, J. Fusion Energ 32(4), 503–508 (2013)CrossRefADSGoogle Scholar
  33. 33.
    M. Akel, Sh. Al-Hawat, S. Lee, J. Fusion Energ 28(4), 355–363 (2009)CrossRefADSGoogle Scholar
  34. 34.
    S. Lee, Radiative Dense Plasma Focus Computation Package: RADPF.; (2014)
  35. 35.
    S. Lee, J. Fusion Energ. Online 4 March. doi: 10.1007/s10894-014-9683-8 (2014)
  36. 36.
    M. Akel, Sh. Al-Hawat, S.H. Saw, S. Lee, J. Fusion Energ 28(4), 355–363 (2009)CrossRefADSGoogle Scholar
  37. 37.
    M. Akel, S. Lee, J. Fusion Energ 32(1), 121–127 (2013)CrossRefADSGoogle Scholar
  38. 38.
    M. Akel, S. Lee, J. Fusion Energ 32(1), 107–110 (2013)CrossRefADSGoogle Scholar
  39. 39.
    M. Akel, J. Fusion Energ 32(4), 464–470 (2013)CrossRefADSGoogle Scholar
  40. 40.
    M. Akel, J. Fusion Energ 32(5), 523–530 (2013)CrossRefADSGoogle Scholar
  41. 41.
    C.S. Wong, J. Fiz. Malays. 23, 4 (2002)Google Scholar
  42. 42.
    F.C. Jahoda et al., Phys. Rev. 119, 843 (1960)CrossRefADSGoogle Scholar
  43. 43.
    R.C. Elton, Determination of electron temperatures between 50 eV and 100 keV from X-ray continuum radiation in plasmas. NRL Report, 6738 (1968)Google Scholar
  44. 44.
    C.S. Wong et al., Malays. J. Sci. 17B, 109 (1996)Google Scholar
  45. 45.
    R. Mongkolnavin et al., J. Fiz. Malays. 25(3–4), 87 (2004)Google Scholar
  46. 46.
    C.M. Ng et al., IEEE Trans. Plasma Sci. 26, 4 (1998)Google Scholar
  47. 47.
    S.P. Moo, C.S. Wong, J. Fiz. Malays. 15, 37 (1994)Google Scholar
  48. 48.
    Sh. Al-Hawat, M. Akel, C.S. Wong, J. Fusion Energ 30(6), 503 (2011)CrossRefADSGoogle Scholar
  49. 49.
    M. Akel, S. Alsheikh Salo, C.S. Wong, J. Fusion Energ 32(3), 350–354 (2013)CrossRefADSGoogle Scholar
  50. 50.
    M. Akel, S. Alsheikh Salo, S. Saboohi, C.S. Wong, Vacuum 101, 360–366 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsAtomic Energy CommissionDamascusSyria
  2. 2.Physics Department, Plasma Technology Research CenterUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations