Advertisement

Journal of Fusion Energy

, Volume 33, Issue 5, pp 510–515 | Cite as

(3He,xn) Reaction Cross-Section Calculations for the Structural Fusion Material 181Ta in the Energy Range of 14–75 MeV

  • A. Kaplan
  • V. Çapalı
  • H. Özdoğan
  • A. Aydın
  • E. Tel
  • İ. H. Sarpün
Original Research

Abstract

The theoretical neutron-production cross-sections produced by 181Ta(3He,xn)184−xRe reactions (x = 1–7) for structural fusion material 181Ta in 3He-induced reactions have been performed in the incident 3He energy range of 14–75 MeV. Reaction cross-sections, based on theoretical pre-equilibrium nuclear reaction models, have been calculated theoretically by means of the TALYS 1.6 two component exciton, EMPIRE 3.1 exciton, ALICE/ASH geometry dependent hybrid (GDH) and ALICE/ASH hybrid models. The neutron-production cross-section results of the models have been compared with the each other and against the experimental nuclear reaction data (EXFOR). Except the 181Ta(3He,2n)182Re and 181Ta(3He,7n)177Re reactions, the ALICE/ASH cross-section calculations show generally agreement with the experimental values for all reactions used in this study. The ALICE/ASH–GDH model can be suggested, if the experimental data are unavailable or are improbably to be produced because of the experimental troubles.

Keywords

Neutron-production cross section 3He-induced reactions Tantalum EXFOR file 

Notes

Acknowledgments

This work has been supported by the Süleyman Demirel University Scientific Research Projects Coordination Unit (Project No: 3748-D2-13).

References

  1. 1.
    P.P. Liu et al., J. Alloys Compd. 579, 599 (2013)CrossRefGoogle Scholar
  2. 2.
    P.M. Raole et al., Trans. IIM 62, 2 (2009)Google Scholar
  3. 3.
    M. Victoria et al., Nucl. Fusion 41, 1047 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    K. Ehrlich, Philos. Trans. R. Soc. Lond. A 357, 595 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    A. Kaplan et al., J Fusion Energ. 29, 353 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    K. Abe, A. Iizuka, A. Hasegawa, S. Morozumi, J. Nucl. Mater. 122–123, 972 (1984)CrossRefGoogle Scholar
  7. 7.
    A. Grallert, J. Csikai, S.M. Qaim, J. Knieper, Nucl. Instr. Meth. A 334, 154 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    F. Tarkanyi et al., Nucl. Instrum. Method Phys. Res. B 207, 381 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    E. Tel et al., J. Fusion Energ. 32, 304 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    G.S. Bauer, Nucl. Instrum. Methods Phys. Res. A 463, 505 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    V. Shankar et al., Fusion Eng. Des. 87, 318 (2012)CrossRefGoogle Scholar
  12. 12.
    C. Bhatia et al., Phys. Rev. C 87, 031601(R) (2013)ADSCrossRefGoogle Scholar
  13. 13.
    H. Aytekin et al., J. Fusion Energ. 30, 21 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    T. Nishio et al., J. Nucl. Sci. Technol. 2, 955 (2002)Google Scholar
  15. 15.
    A. Kaplan et al., J. Fusion Energ. 32, 344 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    E. Tel et al., J. Fusion Energ. 32, 304 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A. Kaplan, J. Fusion Energ. 32, 382 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    A. Kaplan et al., J. Fusion Energ. 32, 431 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    H. Aytekin et al., J. Radioanal. Nucl. Chem. 298, 95 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Aydın et al., J. Fusion Energ. 27, 308 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    E. Tel et al., J. Fusion Energ. 31, 184 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    A. Kaplan, V. Çapalı, J. Fusion Energ. 33, 299 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Koning, S. Hilaire, S. Goriely, TALYS–1.6 A Nuclear Reaction Program, User Manual, First Edition: December 23, 2013 (NRG, The Netherlands, 2013)Google Scholar
  24. 24.
    M. Herman et al., Nucl. Data Sheets 108, 2655 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    M. Herman et al., EMPIRE–3.1 Rivoli modular system for nuclear reaction calculations and nuclear data evaluation, user’s manual (2012)Google Scholar
  26. 26.
    C.H.M. Broeders, A.Yu. Konobeyev, Yu.A. Korovin, V.P. Lunev, and M. Blann, ALICE/ASH—pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, FZK 7183 (2006). http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf
  27. 27.
    Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (experimental nuclear reaction data file). Database Version of November 20, 2013 (2013), (http://www.nndc.bnl.gov/exfor/)
  28. 28.
    A.J. Koning, S. Hilaire, M.C. Duijvestijn, TALYS: comprehensive nuclear reaction modeling, in Proceedings of the International Conference on Nuclear Data for Science and Technology-ND 2004, AIP, vol. 769, ed. by R.C. Haight, M.B. Chadwick, T. Kawano, P. Talou (Santa Fe, USA, 2005), pp. 1154–1159Google Scholar
  29. 29.
    R. Crasta et al., J. Radioanal. Nucl. Chem. 290, 367 (2011)CrossRefGoogle Scholar
  30. 30.
    A.J. Koning, M.C. Duijvestijn, Nucl. Phys. A 744, 15 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    C. Kalbach, Phys. Rev. C 33, 818 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    J.J. Griffin, Phys. Rev. Lett. 17, 478 (1966)ADSCrossRefGoogle Scholar
  33. 33.
    C. Cline, M. Blann, Nucl. Phys. A 172, 225 (1971)ADSCrossRefGoogle Scholar
  34. 34.
    C.K. Cline, Nucl. Phys. A 193, 417 (1972)ADSCrossRefGoogle Scholar
  35. 35.
    I. Ribansky et al., Nucl. Phys. A 205, 545 (1973)ADSCrossRefGoogle Scholar
  36. 36.
    A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Yad. Fiz. 29, 875 (1979) [Sov. J. Nucl. Phys. 29, 450 (1979)]Google Scholar
  37. 37.
    M. Blann, Code ALICE-91, PSR-146, Statistical Model Code System with Fission Competition, Oak Ridge National Laboratory, RSICC Peripheral Shielding Routine Collection, Lawrence Livermore National Laboratory, Livermore, California and IAEA (1991)Google Scholar
  38. 38.
    M. Blann, H.K. Vonach, Phys. Rev. C 28, 1475 (1983)ADSCrossRefGoogle Scholar
  39. 39.
    M. Blann, A. Mignerey, W. Scobel, Nukleonika 21, 335 (1976)Google Scholar
  40. 40.
    Y. Nagame et al., Nucl. Phys. A 486, 77 (1988)ADSCrossRefGoogle Scholar
  41. 41.
    N.E. Scott, J.W. Cobble, P.J. Daly, Nucl. Phys. A 119, 131 (1968)ADSCrossRefGoogle Scholar
  42. 42.
    F. Hermes et al., Nucl. Phys. A 228, 175 (1974)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Kaplan
    • 1
  • V. Çapalı
    • 1
  • H. Özdoğan
    • 1
    • 2
  • A. Aydın
    • 3
  • E. Tel
    • 4
  • İ. H. Sarpün
    • 5
  1. 1.Department of Physics, Faculty of Arts and SciencesSüleyman Demirel UniversityIspartaTurkey
  2. 2.Department of Biophysics, Faculty of MedicineAkdeniz UniversityAntalyaTurkey
  3. 3.Department of Physics, Faculty of Arts and SciencesKırıkkale UniversityKirikkaleTurkey
  4. 4.Department of Physics, Faculty of Arts and SciencesOsmaniye Korkut Ata UniversityOsmaniyeTurkey
  5. 5.Department of Physics, Faculty of Arts and SciencesAfyon Kocatepe UniversityAfyonkarahisarTurkey

Personalised recommendations