Journal of Fusion Energy

, Volume 33, Issue 3, pp 264–268 | Cite as

Plasma Stability Evaluation Based on MHD Activity and Hard X-Ray Emission in the IR-T1 Tokamak

Original Research


Determinations of the poloidal beta, internal inductance, plasma energy, plasma pressure, plasma temperature, plasma resistance, plasma effective atomic number, magneto-hydrodynamics (MHD) activity, Runaway electrons energy and energy confinement time are essential for tokamak experiments and optimized operation. Also some of the plasma information can be deduced from these parameters, such as plasma toroidal current profile, and MHD instabilities. In this contribution we investigated about measurements of some plasma parameters as well as MHD activity and Runaway electrons energy. For this purpose we used the magnetic diagnostics and a hard X-ray spectroscopy in IR-T1 tokamak. A hard X-ray emission is produced by collision of the Runaway electrons with the plasma particles or limiters. The mean energy was calculated from the slope of the energy spectrum of hard X-ray photons. In this paper in order to measure energy of the Runaway electrons, we obtained hard X-ray energy in every 5 ms intervals, from the beginning to the end of plasma. Results indicated mean energy of Runaway electrons is maximum during the 0–5 ms interval.


Tokamak Plasma parameters MHD activity Runaway electrons Hard X-ray 


  1. 1.
    H. Dreicer, Phys. Rev. 115, 238 (1959)ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    K. Miyamoto, Fundamentals of Plasma Physics and Controlled Fusion, chap. 2. 2000, p. 18Google Scholar
  3. 3.
    Y.A. Sokolov, JETP Lett. 29, 218 (1979)ADSGoogle Scholar
  4. 4.
    R. Jaspers et al., Nucl. Fusion 33, 1775 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    T. Kudyakov et al., Nucl. Fusion 48, 122002 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    V.V. Plyusnin et al., Nucl. Fusion 46, 277 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    R. Yoshino et al., Nucl. Fusion 39, 151 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    P.V. Savrukhin, Phys. Rev. Lett. 86, 3036 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    E. Farshi et al., Plasma Phys. Rep. 27, 445 (2001)CrossRefGoogle Scholar
  10. 10.
    R.D. Grill et al., Nucl. Fusion 33, 1613 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    R. Yoshino et al., Plasma Phys. Control. Fusion 39, 313 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    S. Putvinski et al., Plasma Phys. Control. Fusion 39, B157 (1997)CrossRefGoogle Scholar
  13. 13.
    R. Yoshino et al., Nucl. Fusion 40, 7 (2000)CrossRefGoogle Scholar
  14. 14.
    R.M.O. Galvao et al., Plasma Phys Control. Fusion 43, 1181 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Yu.K. Kuznetsov et al., Nucl. Fusion 44, 631 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    R.D. Gill et al., Nucl. Fusion 40, 163 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    C. Rasouli et al., Rev. Sci. Instrum. 80, 013503 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    L. Rodrguez-Rodrigo et al., Phys. Rev. Lett. 74, 3987 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    L. Rodrguez-Rodrigo et al., Nucl. Fusion 34, 649 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Salar Elahi
    • 1
  • M. Ghoranneviss
    • 1
  • M. R. Ghanbari
    • 2
  1. 1.Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Basic Sciences, Garmsar BranchIslamic Azad UniversityGarmsarIran

Personalised recommendations