Advertisement

Journal of Fusion Energy

, Volume 33, Issue 2, pp 139–144 | Cite as

The Effect of Trapped Particles on Gradient Drift Instabilities in Finite Pressure Plasma with a Longitudinally Nonuniform Magnetic Field

  • Alexei Yu. Chirkov
Original Research

Abstract

Gradient drift instabilities are considered on the basis of local dispersion relation developed for the case of longitudinally nonuniform magnetic field. Such a field allows simulating the effect of trapped particles in tokamak geometry separately from other effects. Completely electromagnetic approach is developed to take into account finite pressure. Trapped particles and magnetic field nonuniformity are taken into account by the frequency of the magnetic drift of the particle. Modes propagating perpendicularly to the magnetic field lines are typical from the viewpoint of effect of trapped electrons. In finite pressure plasma (ratio of the plasma pressure to the magnetic pressure β ~ 0.1), growth rate decrease is significant, as compared with electrostatic limit (β → 0).

Keywords

Drift waves Nonuniform magnetic field Trapped particles 

Notes

Acknowledgments

This work was partially supported by Russian Foundation for Basic Research, Project 11-08-00700-a.

References

  1. 1.
    E.J. Doyle, W.A. Houlberg, Y. Kamada et al., Nucl. Fusion 47, S18 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    K.H. Burrell, Phys. Plasmas 4, 1499 (1997)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    A.Yu. Chirkov, V.I. Khvesyuk, Phys. Plasmas 17, 012105 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    V.I. Khvesyuk, A.Yu. Chirkov, Plasma Phys. Rep. 36, 1112 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    A.Yu. Chirkov, V.I. Khvesyuk, Plasma Phys. Rep. 37, 437 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    A. Hirose, Phys. Fluids B3, 1599 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    T.M. Antonsen, B. Lane, Phys. Fluids 23, 1205 (1980)ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    P.J. Catto, W.M. Tang, D.E. Baldwin, IEEE Trans. Plasma Sci. 23, 639 (1981)Google Scholar
  9. 9.
    W. Horton, Phys. Fluids 26, 1461 (1983)ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    K.T. Tsang, C.Z. Cheng, Phys. Fluids B3, 688 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    F. Jenko, W. Dorland, M. Kotschenreuther, B.N. Rogers, Phys. Plasmas 7, 1904 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    A.B. Mikhailovskii, Instabilities in a confined plasma (Atomizdat, Moscow, 1978)Google Scholar
  13. 13.
    A.B. Mikhailovskii, Instabilities in a confined plasma (IOP, Bristol, 1998)Google Scholar
  14. 14.
    T.H. Dupree, Phys. Fluids 10, 1049 (1967)ADSCrossRefGoogle Scholar
  15. 15.
    G.D. Conway, Plasma Phys. Control Fusion 50, 124026 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    V.I. Khvesyuk, J. Fusion Energ. 31, 273 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussian Federation

Personalised recommendations