Skip to main content
Log in

The Effect of Trapped Particles on Gradient Drift Instabilities in Finite Pressure Plasma with a Longitudinally Nonuniform Magnetic Field

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Gradient drift instabilities are considered on the basis of local dispersion relation developed for the case of longitudinally nonuniform magnetic field. Such a field allows simulating the effect of trapped particles in tokamak geometry separately from other effects. Completely electromagnetic approach is developed to take into account finite pressure. Trapped particles and magnetic field nonuniformity are taken into account by the frequency of the magnetic drift of the particle. Modes propagating perpendicularly to the magnetic field lines are typical from the viewpoint of effect of trapped electrons. In finite pressure plasma (ratio of the plasma pressure to the magnetic pressure β ~ 0.1), growth rate decrease is significant, as compared with electrostatic limit (β → 0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.J. Doyle, W.A. Houlberg, Y. Kamada et al., Nucl. Fusion 47, S18 (2007)

    Article  ADS  Google Scholar 

  2. K.H. Burrell, Phys. Plasmas 4, 1499 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  3. A.Yu. Chirkov, V.I. Khvesyuk, Phys. Plasmas 17, 012105 (2010)

    Article  ADS  Google Scholar 

  4. V.I. Khvesyuk, A.Yu. Chirkov, Plasma Phys. Rep. 36, 1112 (2010)

    Article  ADS  Google Scholar 

  5. A.Yu. Chirkov, V.I. Khvesyuk, Plasma Phys. Rep. 37, 437 (2011)

    Article  ADS  Google Scholar 

  6. A. Hirose, Phys. Fluids B3, 1599 (1991)

    Article  ADS  Google Scholar 

  7. T.M. Antonsen, B. Lane, Phys. Fluids 23, 1205 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. P.J. Catto, W.M. Tang, D.E. Baldwin, IEEE Trans. Plasma Sci. 23, 639 (1981)

    Google Scholar 

  9. W. Horton, Phys. Fluids 26, 1461 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. K.T. Tsang, C.Z. Cheng, Phys. Fluids B3, 688 (1991)

    Article  ADS  Google Scholar 

  11. F. Jenko, W. Dorland, M. Kotschenreuther, B.N. Rogers, Phys. Plasmas 7, 1904 (2000)

    Article  ADS  Google Scholar 

  12. A.B. Mikhailovskii, Instabilities in a confined plasma (Atomizdat, Moscow, 1978)

    Google Scholar 

  13. A.B. Mikhailovskii, Instabilities in a confined plasma (IOP, Bristol, 1998)

    Google Scholar 

  14. T.H. Dupree, Phys. Fluids 10, 1049 (1967)

    Article  ADS  Google Scholar 

  15. G.D. Conway, Plasma Phys. Control Fusion 50, 124026 (2008)

    Article  ADS  Google Scholar 

  16. V.I. Khvesyuk, J. Fusion Energ. 31, 273 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Russian Foundation for Basic Research, Project 11-08-00700-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Yu. Chirkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, A.Y. The Effect of Trapped Particles on Gradient Drift Instabilities in Finite Pressure Plasma with a Longitudinally Nonuniform Magnetic Field. J Fusion Energ 33, 139–144 (2014). https://doi.org/10.1007/s10894-013-9649-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-013-9649-2

Keywords

Navigation